The information theory of higher-order interactions

From surprisal to Ising interactions

Abel Jansma シ @Abelaer
Demics23, June 2023
University of Edinburgh
Chris Ponting @ Institute of Genetics and Cancer
Luigi Del Debbio @ Higgs Centre for Theoretical Physics
Ava Khamseh @ Informatics

Outline

- Goal: quantify higher-order structure.
- Information theory: Entropy/MI
- Partial information decomposition
- Statistical physics: Interactions in energy-based models
- Are these related?
- Today:
- Relating interactions in energy-based models to information theory.
- Some ways in which synergy is better captured by these interactions than by entropy-based measures.
entropy
Article
Higher-Order Interactions and Their Duals Reveal Synergy and Logical Dependence beyond Shannon-Information
Abel Jansma ${ }^{1,2,3}$

The Ising model: a physical perspective

- A model of interacting spins σ on a lattice, in a magnetic field h.
- $\sigma=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}, \quad \sigma_{i} \in\{0,1\}$.
- The energy of a configuration - at equilibrium-is given by:

$$
E(\sigma)=-\sum_{i, j} J_{i j} \sigma_{i} \sigma_{j}-\sum_{i} h_{i} \sigma_{i}
$$

- High energy: $\uparrow \downarrow \uparrow \downarrow$
- Low energy: $\uparrow \uparrow \uparrow \uparrow$
- The probability of a configuration is given by:

$$
p(\sigma)=\frac{1}{Z} \exp (-\beta E(\sigma))
$$

- $J_{i j}$ is called the coupling, or interaction, between spins i and j.
- Description of magnets, neurons, bird flocks, social dynamics, etc.

The Ising model: a statistical perspective (Jaynes '57)

- Observe binary variables $\sigma=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$.
- Write down a probability distribution $p(\sigma)$.
- Fewest assumptions: maximum entropy distribution

$$
H(p)=-\sum_{\sigma} p(\sigma) \log p(\sigma)
$$

- Subject to constraints $\sum_{\sigma} p(\sigma)=1 \Longrightarrow p(\sigma)=2^{-N}$
- Add more constraints:

$$
\sum_{\sigma} p(\sigma) \sigma_{i}=\mu_{i}, \quad \sum_{\sigma} p(\sigma) \sigma_{i} \sigma_{j}=\mu_{i j}
$$

- $\Longrightarrow p(\sigma)=\frac{1}{Z} \exp \left(-\sum_{i, j} J_{i j} \sigma_{i} \sigma_{j}-\sum_{i} h_{i} \sigma_{i}\right)$
- Ising model!
- Interactions and field fixed by observed moments.

Higher-order interactions

- What if you constrain the higher-order moments?
- MaxEnt solution:

$$
E(\sigma)=-\sum_{i} h_{i} \sigma_{i}-\sum_{i, j} J_{i j} \sigma_{i} \sigma_{j}-\sum_{i, j, k} J_{i j k} \sigma_{i} \sigma_{j} \sigma_{k}-\ldots
$$

- An Ising model with higher-order interactions.
- Predicting properties of $p(\sigma)$ is the forward Ising problem.
- Fitting to data-the inverse Ising problem-is hard.
- MLE inference (exponential, pairwise only?)
- Pseudolikelihood (polynomial, approximate but consistent, pairwise only?)
- Restricted Boltzmann machines (approximate, unstable)

Model-free interactions

- What do we really mean when we say interaction? (Beentjes \& Khamseh, 2020)
- A change in tendency to be on/off when another variable is on/off.

Tendency to be on, or 1-point interaction:

$$
I_{i}=\left.\frac{\partial \log p(X)}{\partial X_{i}}\right|_{\underline{X}=0}
$$

$$
\underline{X}=X \backslash\left\{X_{i}\right\}
$$

2-point interaction:

$$
I_{i j}=\left.\frac{\partial I_{i}}{\partial X_{j}}\right|_{\underline{X}=0}=\left.\frac{\partial^{2} \log p(X)}{\partial X_{j} \partial X_{i}}\right|_{\underline{X}=0} \quad \underline{X}=X \backslash\left\{X_{i}, X_{j}\right\}
$$

Model-free interactions

- A change in 2-point interaction is a 3-point interaction:

$$
I_{i j k}=\left.\frac{\partial I_{i j}}{\partial X_{k}}\right|_{\underline{X}=0}=\left.\frac{\partial^{3} \log p(X)}{\partial X_{k} \partial X_{j} \partial X_{i}}\right|_{\underline{X}=0} \quad \underline{X}=X \backslash\left\{X_{i}, X_{j}, X_{k}\right\}
$$

- And so on.
- When the X_{i} are binary, the derivatives are just differences:

$$
\begin{aligned}
I_{i} & =\left.\frac{\partial \log p(X)}{\partial X_{i}}\right|_{\underline{X}=0} \\
& =\log p\left(X_{i}=1 \mid \underline{X}=0\right)-\log p\left(X_{i}=0 \mid \underline{X}=0\right) \\
& =\log \frac{p\left(X_{i}=1 \mid \underline{X}=0\right)}{p\left(X_{i}=0 \mid \underline{X}=0\right)}
\end{aligned}
$$

Model-free interactions

- Notation $p_{a b c}=p\left(X_{i}=a, X_{j}=b, X_{k}=c \mid \underline{X}=0\right)$
- 1-point interactions:

$$
I_{i}=\left.\frac{\partial \log p(X)}{\partial X_{i}}\right|_{\underline{X}=0}=\log \frac{p_{1}}{p_{0}}
$$

2-point:

$$
I_{i j}=\left.\frac{\partial^{2} \log p(X)}{\partial X_{j} \partial X_{i}}\right|_{\underline{X}=0}=\log \frac{p_{11} p_{00}}{p_{01} p_{10}}
$$

3-point:

$$
I_{i j k}=\left.\frac{\partial^{3} \log p(X)}{\partial X_{k} \partial X_{j} \partial X_{i}}\right|_{\underline{X}=0}=\log \frac{p_{111} p_{100} p_{010} p_{001}}{p_{000} p_{011} p_{101} p_{110}}
$$

- Model-free estimator: sample means!
- Symmetric in terms of the variables: $I_{S}=I_{\pi(S)}$
- Conditionally independent variables do not interact: $X_{i} \Perp X_{j} \mid \underline{X} \Longrightarrow I_{i j}=0$

Model-free interactions solve the inverse Ising problem!

$$
\begin{aligned}
E(X) & =-\sum_{i} h_{i} X_{i}-\sum_{i, j} J_{i j} X_{i} X_{j}-\sum_{i, j, k} J_{i j k} X_{i} X_{j} X_{k}-\ldots \\
I_{i j k} & =\left.\frac{\partial^{3} \log p(X)}{\partial X_{k} \partial X_{j} \partial X_{i}}\right|_{\underline{X}=0} \\
& =-\left.\frac{\partial^{3} E(X)}{\partial X_{k} \partial X_{j} \partial X_{i}}\right|_{\underline{X}=0} \\
& =J_{i j k} \\
& =\log \frac{p_{111} p_{100} p_{010} p_{001}}{p_{000} p_{011} p_{101} p_{110}} \approx \log \frac{\hat{n}_{111} \hat{n}_{100} \hat{n}_{010} \hat{n}_{001}}{\hat{n}_{000} \hat{n}_{011} \hat{n}_{101} \hat{n}_{110}}
\end{aligned}
$$

- $\hat{n}_{a b c}$ is the number of samples that look like $(0, \ldots, 0, a, b, c, 0, \ldots, 0)$

Model-free interactions

- Surprisal of a state $X:-\log p(X)$
- Interactions are sums of surprisals:

$$
\begin{aligned}
I_{i} & =\log \frac{p_{1}}{p_{0}}=\log p_{1}-\log p_{0} \\
I_{i j} & =\log \frac{p_{11} p_{00}}{p_{01} p_{10}}=\log p_{11}+\log p_{11}-\log p_{01}-\log p_{10} \\
I_{i j k} & =\log \frac{p_{111} p_{100} p_{010} p_{001}}{p_{000} p_{011} p_{101} p_{110}}=\ldots
\end{aligned}
$$

- What determines the alternating signs? (Even/odd)
- Similar to mutual information

Mutual information

- Higher-order mutual information:

$$
\begin{aligned}
M I(X, Y) & =H(X)-H(X \mid Y) \\
& =H(X)+H(Y)-H(X, Y) \\
M I(X, Y, Z) & =M I(X, Y)-M I(X, Y \mid Z) \\
& =H(X)+H(Y)+H(Z)-H(X, Y)-H(X, Z)-H(Y, Z)+H(X, Y, Z)
\end{aligned}
$$

- Sign determined by even/odd number of variables
- Higher-order structure is captured by Möbius inversion

Möbius function

- Subsets form a lattice under inclusion:
- $S \leq T \Longleftrightarrow S \subseteq T$
- Capture relationships in poset P : Mobius function $\mu_{P}: P \times P \rightarrow \mathbb{R}$

$$
\mu_{P}(x, y)= \begin{cases}1 & \text { if } x=y \\ -\sum_{z: x \leq z<y} \mu_{P}(x, z) & \text { if } x<y \\ 0 & \text { otherwise }\end{cases}
$$

$$
\{X, Y, Z\}=\hat{1}
$$

Möbius inversion

Definition: Möbius inversion over a poset, Rota (1964)

Let P be a poset (S, \leq), let $\mu_{P}: P \times P \rightarrow \mathbb{R}$ be the Möbius function, and let $g: P \rightarrow \mathbb{R}$ be a function on P. Then, the function

$$
f(y)=\sum_{x \leq y} \mu_{P}(x, y) g(x)
$$

is called the Möbius inversion of g on P. Furthermore, this can be inverted:

$$
f(y)=\sum_{x \leq y} \mu_{P}(x, y) g(x) \Longleftrightarrow g(y)=\sum_{x \leq y} f(x)
$$

- On Boolean algebra (hypercube): $\mu(x, y)=(-1)^{|x|-|y|}$
\Longrightarrow Möbius inversions on Boolean algebras are sign-alternating sums.

Möbius inversion

- Mutual information is the Möbius inversion of marginal entropy:

$$
M I(\tau)=(-1)^{|\tau|-1} \sum_{\eta \leq \tau} \mu_{P}(\eta, \tau) H(\eta)
$$

- Pointwise mutual information is the Möbius inversion of marginal surprisal:

$$
\operatorname{pmi}(\tau)=(-1)^{|\tau|-1} \sum_{\eta \leq \tau} \mu_{P}(\eta, \tau) \log p(\eta)
$$

- Model-free interactions are the Möbius inversion of surprisal:

$$
I(\tau ; T)=\sum_{\eta \leq \tau}(-1)^{|\eta|-|\tau|} \log p(\eta=1, T \backslash \eta=0)
$$

Dual quantities

- If $P=(S, \leq)$ is a lattice, then $P^{\mathrm{op}}=(S, \preceq)$ (where $a \preceq b \Longleftrightarrow a \geq b$) is a lattice.
- What is dual mutual information

$$
M I^{*}(\tau)=\sum_{\eta \preceq \tau}(-1)^{|\eta|+1} H(\eta) ?
$$

- Dual MI of a single variable X :

$$
\begin{aligned}
M I^{*}(X) & =M I(X, Y, Z)-M I(Y, Z) \\
& =M I(Y, Z \mid X)=\Delta_{X}
\end{aligned}
$$

- Conditional/differential mutual information.
- $M I^{*}(X, Y)=H(X, Y, Z)-H(X, Y)=H(X \mid Y, Z)$

- In general context $T: M I^{*}(\tau)=M I(T \backslash \tau \mid \tau)$

Dual quantities

- Dual interactions $I^{*}(\tau ; T)=\sum_{\eta \preceq \tau}(-1)^{|\eta|-|\tau|} \log p(\eta=1, T \backslash \eta=0)$
- Dual interaction of a single variable X in a system with 3 variables:

$$
\begin{aligned}
I^{*}(X ;\{X, Y, Z\}) & =I(X, Y, Z)+I(Y, Z) \\
& =\log \frac{p_{111} p_{100}}{p_{110} p_{101}}
\end{aligned}
$$

- This is $\left.I(Y, Z)\right|_{X=1}$.
- Dual interactions are interactions in a context of 1s:
- $I^{*}(\tau ; T)=\left.I(T \backslash \tau)\right|_{\tau=1}$
- Outeractions

Summary

- Mutual information is the Möbius inversion of marginal entropy.
- Pointwise mutual information is the Möbius inversion of marginal surprisal.
- Model-free interactions are the Möbius inversion of surprisal.
- Dual mutual information is a generalisation of conditional entropy/differential mutual information.
- Dual interactions are interactions in a context of 1s.
- NB: These all imply an intuitive inverse relation:

$$
f(y)=\sum_{x \leq y} \mu_{P}(x, y) g(x) \Longleftrightarrow g(y)=\sum_{x \leq y} f(x)
$$

Summary

- Define: eval $_{T}: \log p(R=r) \mapsto \log p(R=1, T \backslash R=0)$
- Then:

Results: Synergy in logic gates

- What does a 3-pt interaction correspond to?

$$
I_{A B C}=\log \frac{p_{111} p_{100} p_{010} p_{001}}{p_{000} p_{011} p_{101} p_{110}}
$$

- Maximally positive \Longrightarrow only terms in numerator are >0.

A	B	C
0	0	1
0	1	0
1	0	0
1	1	1

- XNOR gate!
- (XOR is maximally negative)

Results: Synergy in logic gates

- Let $p($ allowed state $)=p$ and $p($ forbidden state $)=\epsilon$.
- Let $I=4 \log \frac{p}{\epsilon}$
- Interactions have higher resolution than MI.
- AND~NOR and OR~NAND.
- Def. $\boldsymbol{J}_{A}=\boldsymbol{I}_{A B C}-\boldsymbol{I}_{B C}$
- \boldsymbol{J}_{A} has perfect resolution.
- $\boldsymbol{J}_{\boldsymbol{A}}^{\mathrm{XNOR}}>\boldsymbol{J}_{\boldsymbol{A}}^{\mathrm{NOR}}>\boldsymbol{J}_{\boldsymbol{A}}^{\mathrm{AND}}$.

\mathcal{G}	$\boldsymbol{I}_{\boldsymbol{A B C}}$	$\boldsymbol{M I}_{\boldsymbol{A B C}}$	$\boldsymbol{J}_{\boldsymbol{A}}$
XNOR	I	-1	$\frac{3}{2} I$
XOR	$-I$	-1	$-\frac{3}{2} I$
AND	$\frac{1}{2} I$	-0.189	$\frac{1}{2} I$
OR	$-\frac{1}{2} I$	-0.189	$-I$
NAND	$-\frac{1}{2} I$	-0.189	$-\frac{1}{2} I$
NOR	$\frac{1}{2} I$	-0.189	I

- Ordered by synergistic content.
- (holds for even higher-orders as well)

Results: Causal dynamics

Mutual

Dynamics Causal graph Correlation Partial corr information

Add. collider collider \& chain
$C=\frac{1}{2}(A+B)$

Add. collider
$C=\frac{1}{2}(A+B)$

Mult. collider

$C=\frac{1}{2}(A+B)$

Mult. collider \& chain $\stackrel{+1}{\square}$

Results: Dy- and Triadic distribution

- 6 variables: $\left(X_{0}, X_{1}, Y_{0}, Y_{1}, Z_{0}, Z_{1}\right)$
- Dyadic: $X_{0}=Y_{1}, Y_{0}=Z_{1}, Z_{0}=X_{1}$
- Triadic: $X_{0}+Y_{0}+Z_{0}=0 \bmod 2$ and $X_{1}=Y_{1}=Z_{1}$
- Variables combined to form categorical variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$.
- $\left(X_{0}, X_{1}\right)=(1,1) \Longrightarrow \mathbf{X}=3$
- Indistinguishable by almost all information measures. (James \& Crutchfield, 2017)
- PID: has to identify in- and output variables.

Dyadic				Triadic			
\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathrm{P}(\mathrm{s})$	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathrm{P}(\mathrm{s})$
0	0	0	p	0	0	0	p
0	2	1	p	1	1	1	p
1	0	2	p	0	2	2	p
1	2	3	p	1	3	3	p
2	1	0	p	2	0	2	p
2	3	1	p	3	1	3	p
3	1	2	p	2	2	0	p
3	3	3	p	3	3	1	p
	else		ϵ		else		ϵ

- Symmetrised categorical interactions: I
- Dyadic: $\mathbf{I}_{X Y Z}=\log 1=0$
- Triadic: $\mathbf{I}_{X Y Z}=64 \log \frac{\epsilon}{p}$

Teaser: model-free interactions on real data

- Samples that look like $(0, \ldots, 0, a, b, c, 0, \ldots, 0)$ can be rare.
- Estimation becomes tractable using Markov blankets.
- In my thesis, I calculated MFIs in gene expression data.
- 1000 genes, 20 k cells
- Interactions at up to seventh order.
- These revealed types of neurons not found in embryonic mice before.

Conclusion

- Entropy-based information measures cannot distinguish all causal dynamics.
- Ising-like interactions can offer higher resolution.
- Uniquely identify causal dynamics \& logic gates.
- The different notions of higher-order structure are all based on Möbius inversions:
- (Pointwise) mutual information, Ising interactions are inversions on Boolean algebra
- All have meaningful duals.
- Other lattices:
- categorical Ising-like interactions.
- PID: Möbius inversion on redundancy lattice.
- Möbius inversions capture different notions of higher-order structure.
- Ising interactions exactly disentangle different orders of dependencies, at the cost of an operational interpretation.

References

- A Jansma, Higher-Order Interactions and Their Duals Reveal Synergy and Logical Dependence beyond Shannon-Information Entropy 25 (4), 648, 2023
- SV Beentjes \& A Khamseh, Higher-order interactions in statistical physics and machine learning Physical Review E, 102(5), 2020
- ET Jaynes, "Information theory and statistical mechanics", Physical Review 106 (4), 620, 1957
- RG James \& JP Crutchfield, Multivariate dependence beyond Shannon information Entropy 19, 531, 2017

