
The information theory of higher-order interactions
From surprisal to Ising interactions, and beyond

Abel Jansma – DIEP, July 2023

University of Edinburgh
– Institute of Genetics and Cancer
– Higgs Centre for Theoretical Physics
– School of Informatics

@Abelaer



Outline

• Goal: quantify higher-order structure.
• Information theory: Multivariate entropy & mutual information
• Partial information decomposition: Unique, redundant & synergistic information
• Statistical physics: Interactions in energy-based models
• Are these related?

• Today:
• Relating interactions in energy-based models to information theory.
• Some ways in which synergy is better captured by these interactions than by

entropy-based measures.
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Higher-order structure

• Graph:

• Pairwise edges
• e.g. correlations, mutual information,
regression, etc.

• Hypergraph:

• Higher-order edges
• Higher-order dependence?
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Part 1

Part 1: Higher-order information theory
• What is higher-order information?
• Why is it problematic?
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Information and entropy

• Discrete random variable X, distributed as p(X = x)

• Question: how to quantify information/surprise S upon realisation X = x?
• S(X = x) = 0 ⇐⇒ p(X = x) = 1 (no surprise)
• S decreases monotonically with p(x)
• X⊥⊥ Y =⇒ S(X = x, Y = y) = S(X = x) + S(Y = y)

• =⇒ S(X = x) = − log p(x)

• Surprisal/Shannon information
• Expected surprise of X under p(X): H(X) = Ep[S(x)] = −

∑
x p(x) log p(x)

• Entropy of X.
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How to quantify dependence?

• Random variables X and Y

• Independence: X⊥⊥ Y =⇒ p(x, y) = p(x)p(y)

• Question: How far is the joint from the product of marginals?

• Relative entropy/KL divergence: DKL (p(z)||q(z)) =
∑

z p(z) log
p(z)
q(z)

• Mutual information:

MI(X; Y) = DKL(p(x, y)||p(x)p(y)) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log p(x, y)−
∑
x

p(x) log p(x)−
∑
y

p(y) log p(y)

= −H(X, Y) + H(X) + H(Y)

• Conditional mutual information: MI(X; Y|Z) = H(X|Z) + H(Y|Z)− H(X, Y|Z)
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Higher-order dependence

• Difference between joint and product of marginals

DKL

(
p(x1, x2, . . . , xn) ||

n∏
i=1

p(xi)

)
=

n∑
i=1

H(Xi)− H(X1,X2, . . . ,Xn)

= TC(X1,X2, . . . ,Xn)

• Problem: TC only considers terms of order 1 and n.
• Alternative: How does knowledge of X3 affect MI(X1,X2)?

MI(X1,X2,X3) = MI(X1,X2)−MI(X1,X2 | X3)

= H(X1) + H(X2) + H(X3)− H(X1,X2)− H(X1,X3)− H(X2,X3) + H(X1,X2,X3)

• (note: this is symmetric)
• Then continue inductively (up to minus sign):

MI(X1,X2, . . . ,Xn) = MI(X1,X2, . . . ,Xn−1)−MI(X1,X2, . . . ,Xn−1 | Xn) 6



Information and set theory

• Mutual information as a Venn diagram:
• Question: How many elements in the intersection of
finite sets A and B?

| A ∪ B |= | A | + | B | − | A ∩ B |
=⇒ | A ∩ B |=| A | + | B | − | A ∪ B |
=⇒ MI(X, Y) = H(X) + H(Y)− H(X, Y)

• Coincides with previous definition.
• Is information like a set measure?
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Information and set theory

• Question: How many elements in the union of three
finite sets A, B, and C?

• | A ∪ B ∪ C |=| A | + | B | + | C | − | A ∩ B | − | A ∩ C |
− | B ∩ C | + | A ∩ B ∩ C |

• Recall: MI(X1,X2,X3) = H(X1) + H(X2) + H(X3)−
H(X1,X2)− H(X1,X3)− H(X2,X3) + H(X1,X2,X3)

• Union instead of intersection⁈
• Venn diagrams are misleading—entropy is not a measure!

• Intersection of two entropies is not an entropy.
• Mutual information can be negative.
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Negative information

• XOR gate: X3 = X1 ⊕ X2

MI(X1,X2,X3) = MI(X1,X2)−MI(X1,X2 | X3)

= 0− 1 = −1

• Problems:
• How to interpret negative information? (Partial information

decomposition)
• MI(X1,X2,X3) is bounded by pairwise quantities—can we separate

the dependencies at different orders?
• Why does the cardinality of a union of sets show up?

• To answer these questions, let’s first look at a different approach
to higher-order dependence.

X1 X2 X3

0 0 0
0 1 1
1 0 1
1 1 0
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Part 2

Part 2: Higher-order interactions
• Two different perspectives on the Ising model
• A model-free solution to the inverse Ising problem
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The Ising model: a physical perspective

• A model of interacting spins σ on a lattice, in a magnetic field h.
• σ = {σ1, . . . , σN}, σi ∈ {0, 1}.
• The energy of a configuration—at equilibrium—is given by:

E(σ) = −
∑
i,j

Jijσiσj −
∑

i

hiσi

• High energy: ↑ ↓ ↑ ↓
• Low energy: ↑ ↑ ↑ ↑
• The probability of a configuration is given by:

p(σ) =
1
Z
exp(−βE(σ))

• Jij is called the coupling, or interaction, between spins i and j.
• Description of magnets, neurons, bird flocks, social dynamics, etc. 11



The Ising model: a statistical perspective (Jaynes ’57)

• Observe binary variables σ = {σ1, . . . , σN}.
• Write down a probability distribution p(σ).
• Fewest assumptions: maximum entropy distribution

H(p) = −
∑
σ

p(σ) log p(σ)

• Subject to constraints
∑

σ p(σ) = 1 =⇒ p(σ) = 2−N

• Add more constraints: ∑
σ

p(σ)σi = µi,
∑
σ

p(σ)σiσj = µij

• =⇒ p(σ) = 1
Z exp(−

∑
i,j Jijσiσj −

∑
i hiσi)

• Ising model!
• Interactions and field fixed by observed moments. 12



Higher-order interactions & the inverse problem

• What if you constrain the higher-order moments?
• MaxEnt solution:

E(σ) = −
∑

i

hiσi −
∑
i,j

Jijσiσj −
∑
i,j,k

Jijkσiσjσk − . . .

• An Ising model with higher-order interactions.
• Predicting properties of p(σ) is the forward Ising problem.
• Fitting to data is the inverse Ising problem.
• Distentangles all orders of interactions.
• The inverse problem is hard.

• MLE inference (exponential, pairwise only?)
• Pseudolikelihood (polynomial, approximate but consistent, pairwise only?)
• Restricted Boltzmann machines (approximate, unstable)
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Interactions from the ground up

• What do we really mean when we say interaction? (Beentjes & Khamseh, 2020)
• A difference which makes a difference. (Bateson, 1972)
• A change in effect on an outcome, determined by the value of another variable, in
the absence of other variables.

1-point interaction with respect to outcome Y:

Ii =
∂Y
∂Xi

∣∣∣
X=0

X = X \ {Xi}

2-point interaction:

Iij =
∂Ii
∂Xj

∣∣∣
X=0

=
∂2Y

∂Xj∂Xi

∣∣∣
X=0

X = X \ {Xi,Xj}
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Interactions from the ground up

• A change in 2-point interaction is a 3-point interaction:

Iijk =
∂Iij
∂Xk

∣∣∣
X=0

=
∂3Y

∂Xk∂Xj∂Xi

∣∣∣
X=0

X = X \ {Xi,Xj,Xk}

• And so on.
• Interactions are defined with respect to an outcome.
• Now: let Y = log p(X), and X ∈ {0, 1}N. Then:

Ii =
∂ log p(X)

∂Xi

∣∣∣
X=0

= log p(Xi = 1 | X = 0)− log p(Xi = 0 | X = 0)

= log
p(Xi = 1 | X = 0)
p(Xi = 0 | X = 0)
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Interactions from the ground up

• Notation pabc = p(Xi = a,Xj = b,Xk = c | X = 0)
• 1-point interactions:

Ii =
∂ log p(X)

∂Xi

∣∣∣
X=0

= log
p1
p0

2-point:

Iij =
∂2 log p(X)
∂Xj∂Xi

∣∣∣
X=0

= log
p11p00
p01p10

3-point:

Iijk =
∂3 log p(X)
∂Xk∂Xj∂Xi

∣∣∣
X=0

= log
p111p100p010p001
p000p011p101p110

• Symmetric in terms of the variables: IS = Iπ(S)
• Conditionally independent variables do not interact: Xi⊥⊥ Xj | X =⇒ Iij = 0
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Model-free interactions solve the inverse Ising problem!

E(X) = −
∑

i

hiXi −
∑
i,j

JijXiXj −
∑
i,j,k

JijkXiXjXk − . . .

Iijk =
∂3 log p(X)
∂Xk∂Xj∂Xi

∣∣∣
X=0

= − ∂3E(X)
∂Xk∂Xj∂Xi

∣∣∣
X=0

= Jijk

= log
p111p100p010p001
p000p011p101p110

≈ log
n̂111n̂100n̂010n̂001
n̂000n̂011n̂101n̂110

• n̂abc is the number of samples that look like (0, . . . , 0, a, b, c, 0, . . . , 0)
• NB: This solves the untruncated problem. 17



Model-free interactions

• Surprisal of a state X = x : − log p(x)

• Interactions are sums of surprisals:

Ii = log
p1
p0

= log p1 − log p0

Iij = log
p11p00
p01p10

= log p11 + log p11 − log p01 − log p10

Iijk = log
p111p100p010p001
p000p011p101p110

= . . .

• What determines the alternating signs? (Even/odd)
• Similar to mutual information
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Mutual information

• Higher-order mutual information:

MI(X, Y) = H(X) + H(Y)− H(X, Y)

MI(X, Y,Z) = H(X) + H(Y) + H(Z)− H(X, Y)− H(X,Z)− H(Y,Z) + H(X, Y,Z)

• Sign determined by even/odd number of variables
• Inclusion/Exclusion principle

• Higher-order structure is captured by Möbius inversion
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Part 3

Part 3:
Higher-order structure as Möbius inversions

• The Möbius inversion formula
• Interactions and information as inversions
• Dualities
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Möbius function

• Subsets form a lattice under inclusion:
• S ≤ T ⇐⇒ S ⊆ T

• Capture relationships in poset P: Möbius
function µP : P× P → R

µP(x, y) =


1 if x = y

−
∑

z:x≤z<y
µP(x, z) if x < y

0 otherwise

{X, Y,Z} = 1̂

{X, Y} {X,Z}

∅ = 0̂

{Y,Z}

{X} {Y} {Z}
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Möbius inversion

Definition: Möbius inversion over a poset, Rota (1964)
Let P be a poset (S,≤), let µP : P× P → R be the Möbius function, and let g : P → R be
a function on P. Then, the function

f(y) =
∑
x≤y

µP(x, y)g(x)

is called the Möbius inversion of g on P. Furthermore, this can be inverted:

f(y) =
∑
x≤y

µP(x, y)g(x) ⇐⇒ g(y) =
∑
x≤y

f(x)
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Möbius function: Examples

• Let P = (N,≤), f : P → R, F(x) =
∑
y≤x

f(y).

µ(a, a) = 1
µ(a, a+ 1) = −1
µ(a, a+ k) = 0, for k > 1

• Then the Möbius inversion of F is f(x) =
∑
y≤x

µ(y, x)F(y) = F(x)− F(x− 1)

• A discrete version of the fundamental theorem of calculus!
• If P is N ordered by divisibility, then µ is the inverse of the Riemann zeta function.
• Given an interval [a, b] on a poset P, µ(a, b) is the reduced Euler characteristic of the
associated simplicial complex.
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Möbius functions on Boolean algebras

A powerset ordered by inclusion is a Boolean algebra.

µ(∅, {Y,Z}) = −
∑

η: ∅≤η<{Y,Z}

µ(∅, η)

= −(µ(∅, ∅) + µ(∅, {Y}) + µ(∅, {Z}))
= −(1+ µ(∅, {Y}) + µ(∅, {Z}))
= −(1− µ(∅, ∅)− µ(∅, ∅))
= −(1− 1− 1) = 1

• On a Boolean algebra µ(x, y) = (−1)|y|−|x|

{X, Y,Z} = 1̂

{Y,Z} {X,Z} ({X, Y}

{Z} {Y} {X}

∅ = 0̂

• The Möbius inversion of the intersection cardinality function | ∗ | : S 7→|
⋂

i Si | is
the union cardinality.

• e.g. | X ∪ Y ∪ Z |=| X | + | Y | + | Z | − | X ∩ Y | − | X ∩ Z | − | Y ∩ Z | + | X ∩ Y ∩ Z |
• Exactly the sign-alternating sums we saw before! 24



Möbius inversion

On a Boolean algebra P of variables T:

• Mutual information is the Möbius inversion of marginal entropy:

MI(τ) = (−1)|τ |−1
∑
η≤τ

µP(η, τ)H(η)

• Pointwise mutual information is the Möbius inversion of marginal surprisal:

pmi(τ) = (−1)|τ |−1
∑
η≤τ

µP(η, τ) log p(η)

• Model-free interactions are the Möbius inversion of surprisal:

I(τ ; T) =
∑
η≤τ

µ(η, τ) log p(η = 1, T \ η = 0)
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Dual quantities

• If P = (S,≤) is a lattice, then Pop = (S,�) (where
a � b ⇐⇒ a ≥ b) is a lattice.

• What is dual mutual information
MI∗(τ) =

∑
η⪯τ (−1)|η|+1H(η)?

• Dual MI of a single variable X:

MI∗(X) = MI(X, Y,Z)−MI(Y,Z)

= MI(Y,Z | X) = ∆X

• Conditional/differential mutual information.
• MI∗(X, Y) = H(X, Y,Z)− H(X, Y) = H(X | Y,Z)
• In general context T : MI∗(τ) = MI(T \ τ | τ)

{X, Y,Z} = 1̂

{X, Y} {X,Z}

∅ = 0̂

{Y,Z}

{X} {Y} {Z}
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Dual quantities

• Dual interactions I∗(τ ; T) =
∑

η⪯τ (−1)|η|−|τ | log p(η = 1, T \ η = 0)
• Dual interaction of a single variable X in a system with 3 variables:

I∗(X; {X, Y,Z}) = I(X, Y,Z) + I(Y,Z)

= log
p111p100
p110p101

• This is I(Y,Z) |X=1.
• Dual interactions are interactions in a context of 1s:
• I∗(τ ; T) = I(T \ τ) |τ=1

• Outeractions
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Summary

• Mutual information is the Möbius inversion of marginal entropy.
• Pointwise mutual information is the Möbius inversion of marginal surprisal.
• Model-free interactions are the Möbius inversion of surprisal.
• Dual mutual information is conditional mutual information.
• Dual interactions are interactions in a context of 1s.
• NB: These all imply an intuitive inverse relation:

f(y) =
∑
x≤y

µP(x, y)g(x) ⇐⇒ g(y) =
∑
x≤y

f(x)

28



Summary

• Define: evalT : log p(R = r) 7→ log p(R = 1, T \ R = 0)
• Then:

MI∗(R) = MI(T \ R | R) −H(R) MI(R)

pmi∗(R = r) log p(R = r) pmi(R = r)

I∗(R; T) log p(R = 1; T = 0) I(R; T)

MP

E E

MP

MP

evalT evalT

MPop

MPop

MPop

E

evalT
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Example: T = {X, Y,Z} and R = {X, Y}

∑
(x,y,z)∈X×Y×Z p(x,y,z) log p(x,y,z)
−

∑
(x,y)∈X×Y p(x,y) log p(x,y)

∑
(x,y)∈X×Y p(x, y) log p(x, y)

∑
(x,y)∈X×Y p(x,y) log p(x,y)
−

∑
x∈X p(x) log p(x)

−
∑

y∈Y p(y) log p(y)

log p(x,y,z)
p(x,y) log p(x, y) log p(x,y)p(∅)

p(x)p(y)

log p(1,1,1)
p(1,1,0) log p(1, 1, 0) log p(1,1,0)p(0,0,0)

p(1,0,0)p(0,1,0)

MP

E E

MP

MP

evalT evalT

MPop

MPop

MPop

E

evalT
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Part 4

Part 4: Results
• What do nonzero interactions correspond to?
• Logic gates, causal dynamics, and di/triadic distributions.
• How do interactions differ from information?
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Results: Synergy in logic gates

• What does a 3-pt interaction correspond to?

IABC = log
p111p100p010p001
p000p011p101p110

• Maximally positive =⇒ only terms in numerator are > 0.
A B C

0 0 1
0 1 0
1 0 0
1 1 1

• XNOR gate!
• (XOR is maximally negative)
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Results: Synergy in logic gates

• XOR is synergistic: Knowing all but one of the input bits gives zero information on
output.

• It is symmetric!
• Can be generalised to n-point XOR:

Xn+1 =
n∑

i=1
Xi mod 2

• Still maximally synergistic
• Still symmetric (consider Xi ↔ Xn+1)
• Still maximal 3-point interaction (parity determines sign)
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Results: Synergy in logic gates

• Let p(allowed state) = p and
p(forbidden state) = ϵ.

• Let I = 4 log p
ϵ

• Interactions have higher resolution
than MI.

• AND∼NOR and OR∼NAND.
• Def. JA = IABC − IBC
• JA has perfect resolution.
• JXNOR

A > JNOR
A > JAND

A .
• Ordered by synergistic content.

G IABC MIABC JA

XNOR I −1 3
2 I

XOR −I −1 − 3
2 I

AND 1
2 I −0.189 1

2 I
OR − 1

2 I −0.189 −I
NAND − 1

2 I −0.189 − 1
2 I

NOR 1
2 I −0.189 I
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Dynamics

Chain

Causal graph

A B

C

Correlation

A B

C

Partial corr.

A B
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Mutual
information

A B
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A B
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A B
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Dynamics
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Dynamics

Mult. collider
C = A× B

A B

C

A B

C

A B
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A B
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C

Add. collider & chain
C = 1

2(A + B)
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A B
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C = A× B

A B

C
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C

A B

C

A B

C

A B

C

Figure 4. Different causal dynamics lead to different association metrics. Green edges denote positive
values, red edges denote negative values, circles denote a 3-point quantity, and dashed lines show
edges that show marginal significance, depending on σ2. Correlations and mutual information
cannot distinguish between most dynamics, and while partial correlation can, for certain noise levels,
identify the correct pairwise relationships, it falls short of distinguishing additive from multiplicative
dynamics. Only MFIs distinguish between all 6 scenarios, and reveal the combinatorial effect of the
multiplicative dynamics as a 3-point interaction. See appendix A.3 for the simulation parameters and
raw numbers. This figure is reproduced with permission from the author of [47].

4.3. Higher-order categorical interactions distinguish dy- and triadic interactions 323

That the interactions have such resolving power over distributions of binary variables 324

is perhaps not so surprising in light of the universality of RBMs with respect to this class of 325

distributions. More surprisingly, their resolving power extends to the case of categorical 326

variables. In [48], the authors introduce two distributions, the dy- and triadic distribu- 327

tions, that are indistinguishable by almost all commonly used information measures (i.e. 328

Shannon-, Renyi(2)-, residual-, and Tsallis entropy, co-information, total correlation, CAEKL 329

mutual information, interaction information, Wyner-, exact-, functional-, and MSS common 330

information, perplexity, disequilibrium, and the LMRP- and TSE complexity). 331

332

The two distributions are defined on 3 variables, each taking a value in a 4-letter 333

alphabet {0, 1, 2, 3}. The joint probabilities are summarised in Table 4. To construct the 334

distributions, each category is represented as a binary string ({0, 1, 2, 3} → {00, 01, 10, 11}), 335

leading to new variables {X0, X1, Y0, Y1, Z0, Z1}. The dyadic distribution is constructed 336

by linking these new variables with pairwise rules: X0 = Y1, Y0 = Z1, Z0 = X1, while the 337

triadic distribution is constructed with rules involving triplets: X0 + Y0 + Z0 = 0 mod 2, 338

and X1 = Y1 = Z1. The resulting binary strings are then reinterpreted as categorical 339

variables to produce Table 4. 340
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Results: Dy- and Triadic distribution

• 6 variables: (X0,X1, Y0, Y1,Z0,Z1)
• Dyadic: X0 = Y1, Y0 = Z1,Z0 = X1

• Triadic: X0 + Y0 + Z0 = 0 mod 2
and X1 = Y1 = Z1

• Variables combined to form categorical variables
X, Y, Z.

• (X0,X1) = (1, 1) =⇒ X = 3
• Indistinguishable by almost all information
measures. (James & Crutchfield, 2017)

• PID: has to identify in- and output variables.
• Symmetrised categorical interactions: I

• Dyadic: IXYZ = log 1 = 0
• Triadic: IXYZ = 64 log ϵ

p

Dyadic Triadic

X Y Z P(s) X Y Z P(s)

0 0 0 p 0 0 0 p
0 2 1 p 1 1 1 p
1 0 2 p 0 2 2 p
1 2 3 p 1 3 3 p
2 1 0 p 2 0 2 p
2 3 1 p 3 1 3 p
3 1 2 p 2 2 0 p
3 3 3 p 3 3 1 p

else ϵ else ϵ
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Part 5

Part 5: Conclusion
• Teaser: model-free interactions on real data
• Conclusion
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Teaser: model-free interactions on real data

• To estimate p(Xi = α,Xj = β | X = 0), count samples:
X = (0, 0, ..., α, ..., β, ..., 0)

• Trick: find a set MBXi ⊂ X s.t. p(Xi | X) = p(Xi | MBXi)

MBX4

MBX1X1

X2

X3

X4

X5

X6

X7

X8

• MB: Markov Blanket
• Xi⊥⊥ X \MBXi | MBXi

• d-separates Xi from ‘the rest’
• Finding minimal MB is
‘Causal Rung 2-hard’
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Teaser: model-free interactions on real data

• Estimation on real data becomes tractable using Markov blankets.
• Error from MB estimate is bounded by pointwise mutual information (a good thing)
• MFIs in gene expression data: 1000 genes, 20k cells.
• Interactions at up to seventh order.
• IG1,G2,G3,... 6= 0 =⇒ non-random gene expression pattern.
• These revealed types of neurons and pathways not found in embryonic mice before.

39



Conclusion

• Entropy-based information measures cannot distinguish all causal dynamics.
• Ising-like interactions can offer higher resolution.
• Uniquely identify causal dynamics & logic gates.
• Möbius inversions capture higher-order structure:

• (Pointwise) mutual information, Ising interactions are inversions on Boolean algebra
• All have meaningful duals.
• Other lattices:
• categorical Ising-like interactions.
• PID: Möbius inversion on redundancy lattice.

• Higher-order interactions are important, and estimable.
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