The information theory of higher-order interactions

From surprisal to Ising interactions, and beyond

Abel Jansma - DIEP, July 2023
University of Edinburgh

- Institute of Genetics and Cancer
- Higgs Centre for Theoretical Physics
- School of Informatics
- @Abelaer

Outline

- Goal: quantify higher-order structure.
- Information theory: Multivariate entropy \& mutual information
- Partial information decomposition: Unique, redundant \& synergistic information
- Statistical physics: Interactions in energy-based models
- Are these related?
- Today:
- Relating interactions in energy-based models to information theory.
- Some ways in which synergy is better captured by these interactions than by entropy-based measures.
entropy
Article
Higher-Order Interactions and Their Duals Reveal Synergy and
Logical Dependence beyond Shannon-Information
Abel Jansma ${ }^{\text {12,3® }}$

Higher-order structure

- Graph:

- Pairwise edges
- e.g. correlations, mutual information, regression, etc.
- Hypergraph:

- Higher-order edges
- Higher-order dependence?

Part 1

Part 1: Higher-order information theory

- What is higher-order information?
- Why is it problematic?

Information and entropy

- Discrete random variable X, distributed as $p(X=x)$
- Question: how to quantify information/surprise S upon realisation $X=x$?
- $S(X=x)=0 \Longleftrightarrow p(X=x)=1$ (no surprise)
- S decreases monotonically with $p(x)$
- $X \Perp Y \Longrightarrow S(X=x, Y=y)=S(X=x)+S(Y=y)$
- $\Longrightarrow S(X=x)=-\log p(x)$
- Surprisal/Shannon information
- Expected surprise of X under $p(X): H(X)=\mathbb{E}_{p}[S(x)]=-\sum_{x} p(x) \log p(x)$
- Entropy of X.

How to quantify dependence?

- Random variables X and Y
- Independence: $X \Perp Y \Longrightarrow p(x, y)=p(x) p(y)$
- Question: How far is the joint from the product of marginals?
- Relative entropy/KL divergence: $D_{K L}(p(z) \| q(z))=\sum_{z} p(z) \log \frac{p(z)}{q(z)}$
- Mutual information:

$$
\begin{aligned}
\operatorname{MI}(X ; Y) & =D_{K L}(p(x, y) \| p(x) p(y))=\sum_{x, y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =\sum_{x, y} p(x, y) \log p(x, y)-\sum_{x} p(x) \log p(x)-\sum_{y} p(y) \log p(y) \\
& =-H(X, Y)+H(X)+H(Y)
\end{aligned}
$$

- Conditional mutual information: $M I(X ; Y \mid Z)=H(X \mid Z)+H(Y \mid Z)-H(X, Y \mid Z)$

Higher-order dependence

- Difference between joint and product of marginals

$$
\begin{aligned}
D_{K L}\left(p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \| \prod_{i=1}^{n} p\left(x_{i}\right)\right) & =\sum_{i=1}^{n} H\left(X_{i}\right)-H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \\
& =\operatorname{TC}\left(X_{1}, X_{2}, \ldots, X_{n}\right)
\end{aligned}
$$

- Problem: TC only considers terms of order 1 and n.
- Alternative: How does knowledge of X_{3} affect $\operatorname{MI}\left(X_{1}, X_{2}\right)$?

$$
\begin{array}{r}
M I\left(X_{1}, X_{2}, X_{3}\right)=M I\left(X_{1}, X_{2}\right)-M I\left(X_{1}, X_{2} \mid X_{3}\right) \\
=H\left(X_{1}\right)+H\left(X_{2}\right)+H\left(X_{3}\right)-H\left(X_{1}, X_{2}\right)-H\left(X_{1}, X_{3}\right)-H\left(X_{2}, X_{3}\right)+H\left(X_{1}, X_{2}, X_{3}\right)
\end{array}
$$

- (note: this is symmetric)
- Then continue inductively (up to minus sign):

$$
\operatorname{MI}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\operatorname{MI}\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)-\operatorname{MI}\left(X_{1}, X_{2}, \ldots, X_{n-1} \mid X_{n}\right)
$$

Information and set theory

- Mutual information as a Venn diagram:
- Question: How many elements in the intersection of finite sets A and B ?

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
& \Longrightarrow|A \cap B|=|A|+|B|-|A \cup B| \\
& \Longrightarrow M I(X, Y)=H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

- Coincides with previous definition.
- Is information like a set measure?

Information and set theory

- Question: How many elements in the union of three finite sets A, B, and C ?
- $|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|$ $-|B \cap C|+|A \cap B \cap C|$
- Recall: $\operatorname{MI}\left(X_{1}, X_{2}, X_{3}\right)=H\left(X_{1}\right)+H\left(X_{2}\right)+H\left(X_{3}\right)-$ $H\left(X_{1}, X_{2}\right)-H\left(X_{1}, X_{3}\right)-H\left(X_{2}, X_{3}\right)+H\left(X_{1}, X_{2}, X_{3}\right)$
- Union instead of intersection?!
- Venn diagrams are misleading-entropy is not a measure!

- Intersection of two entropies is not an entropy.
- Mutual information can be negative.

Negative information

- XOR gate: $X_{3}=X_{1} \oplus X_{2}$

$$
\begin{aligned}
\operatorname{MI}\left(X_{1}, X_{2}, X_{3}\right) & =\operatorname{MI}\left(X_{1}, X_{2}\right)-\operatorname{MI}\left(X_{1}, X_{2} \mid X_{3}\right) \\
& =0-1=-1
\end{aligned}
$$

- Problems:
- How to interpret negative information? (Partial information decomposition)
- $M I\left(X_{1}, X_{2}, X_{3}\right)$ is bounded by pairwise quantities-can we separate the dependencies at different orders?
- Why does the cardinality of a union of sets show up?
- To answer these questions, let's first look at a different approach to higher-order dependence.

X_{1}	X_{2}	X_{3}
0	0	0
0	1	1
1	0	1
1	1	0

Part 2

Part 2: Higher-order interactions

- Two different perspectives on the Ising model
- A model-free solution to the inverse Ising problem

The Ising model: a physical perspective

- A model of interacting spins σ on a lattice, in a magnetic field h.
- $\sigma=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}, \sigma_{i} \in\{0,1\}$.
- The energy of a configuration-at equilibrium-is given by:

$$
E(\sigma)=-\sum_{i, j} \mathcal{F}_{i j} \sigma_{i} \sigma_{j}-\sum_{i} h_{i} \sigma_{i}
$$

- High energy: $\uparrow \downarrow \uparrow \downarrow$
- Low energy: $\uparrow \uparrow \uparrow \uparrow$
- The probability of a configuration is given by:

$$
p(\sigma)=\frac{1}{Z} \exp (-\beta E(\sigma))
$$

- $\mathcal{F}_{i j}$ is called the coupling, or interaction, between spins i and j.
- Description of magnets, neurons, bird flocks, social dynamics, etc.

The Ising model: a statistical perspective (Jaynes '57)

- Observe binary variables $\sigma=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$.
- Write down a probability distribution $p(\sigma)$.
- Fewest assumptions: maximum entropy distribution

$$
H(p)=-\sum_{\sigma} p(\sigma) \log p(\sigma)
$$

- Subject to constraints $\sum_{\sigma} p(\sigma)=1 \Longrightarrow p(\sigma)=2^{-N}$
- Add more constraints:

$$
\sum_{\sigma} p(\sigma) \sigma_{i}=\mu_{i}, \quad \sum_{\sigma} p(\sigma) \sigma_{i} \sigma_{j}=\mu_{i j}
$$

- $\Longrightarrow p(\sigma)=\frac{1}{Z} \exp \left(-\sum_{i, j} \mathcal{Y}_{i j} \sigma_{i} \sigma_{j}-\sum_{i} h_{i} \sigma_{i}\right)$
- Ising model!
- Interactions and field fixed by observed moments.

Higher-order interactions \& the inverse problem

- What if you constrain the higher-order moments?
- MaxEnt solution:

$$
E(\sigma)=-\sum_{i} h_{i} \sigma_{i}-\sum_{i, j} \mathcal{F}_{i j} \sigma_{i} \sigma_{j}-\sum_{i, j, k} \mathcal{F}_{i j k} \sigma_{i} \sigma_{j} \sigma_{k}-\ldots
$$

- An Ising model with higher-order interactions.
- Predicting properties of $p(\sigma)$ is the forward Ising problem.
- Fitting to data is the inverse Ising problem.
- Distentangles all orders of interactions.
- The inverse problem is hard.
- MLE inference (exponential, pairwise only?)
- Pseudolikelihood (polynomial, approximate but consistent, pairwise only?)
- Restricted Boltzmann machines (approximate, unstable)

Interactions from the ground up

- What do we really mean when we say interaction? (Beentjes \& Khamseh, 2020)
- A difference which makes a difference. (Bateson, 1972)
- A change in effect on an outcome, determined by the value of another variable, in the absence of other variables.

1-point interaction with respect to outcome Y :

$$
I_{i}=\left.\frac{\partial Y}{\partial X_{i}}\right|_{\underline{X}=0}
$$

$$
\underline{X}=X \backslash\left\{X_{i}\right\}
$$

2-point interaction:

$$
I_{i j}=\left.\frac{\partial I_{i}}{\partial X_{j}}\right|_{\underline{X}=0}=\left.\frac{\partial^{2} Y}{\partial X_{j} \partial X_{i}}\right|_{\underline{X}=0} \quad \underline{X}=X \backslash\left\{X_{i}, X_{j}\right\}
$$

Interactions from the ground up

- A change in 2-point interaction is a 3-point interaction:

$$
I_{i j k}=\left.\frac{\partial I_{i j}}{\partial X_{k}}\right|_{\underline{X}=0}=\left.\frac{\partial^{3} Y}{\partial X_{k} \partial X_{j} \partial X_{i}}\right|_{\underline{X}=0} \quad \underline{X}=X \backslash\left\{X_{i}, X_{j}, X_{k}\right\}
$$

- And so on.
- Interactions are defined with respect to an outcome.
- Now: let $Y=\log p(X)$, and $X \in\{0,1\}^{N}$. Then:

$$
\begin{aligned}
I_{i} & =\left.\frac{\partial \log p(X)}{\partial X_{i}}\right|_{\underline{X}=0} \\
& =\log p\left(X_{i}=1 \mid \underline{X}=0\right)-\log p\left(X_{i}=0 \mid \underline{X}=0\right) \\
& =\log \frac{p\left(X_{i}=1 \mid \underline{X}=0\right)}{p\left(X_{i}=0 \mid \underline{X}=0\right)}
\end{aligned}
$$

Interactions from the ground up

- Notation $p_{a b c}=p\left(X_{i}=a, X_{j}=b, X_{k}=c \mid \underline{X}=0\right)$
- 1-point interactions:

$$
I_{i}=\left.\frac{\partial \log p(X)}{\partial X_{i}}\right|_{\underline{X}=0}=\log \frac{p_{1}}{p_{0}}
$$

2-point:

$$
I_{i j}=\left.\frac{\partial^{2} \log p(X)}{\partial X_{j} \partial X_{i}}\right|_{\underline{X}=0}=\log \frac{p_{11} p_{00}}{p_{01} p_{10}}
$$

3-point:

$$
I_{i j k}=\left.\frac{\partial^{3} \log p(X)}{\partial X_{k} \partial X_{j} \partial X_{i}}\right|_{\underline{X}=0}=\log \frac{p_{111} p_{100} p_{010} p_{001}}{p_{000} p_{011} p_{101} p_{110}}
$$

- Symmetric in terms of the variables: $I_{S}=I_{\pi(S)}$
- Conditionally independent variables do not interact: $X_{i} \Perp X_{j} \mid \underline{X} \Longrightarrow I_{i j}=0$

Model-free interactions solve the inverse Ising problem!

$$
\begin{aligned}
E(X) & =-\sum_{i} h_{i} X_{i}-\sum_{i, j} \mathcal{F}_{i j} X_{i} X_{j}-\sum_{i, j, k} \mathcal{F}_{i j k} X_{i} X_{j} X_{k}-\ldots \\
I_{i j k} & =\left.\frac{\partial^{3} \log p(X)}{\partial X_{k} \partial X_{j} \partial X_{i}}\right|_{\underline{X}=0} \\
& =-\left.\frac{\partial^{3} E(X)}{\partial X_{k} \partial X_{j} \partial X_{i}}\right|_{\underline{X}=0} \\
& =\mathcal{F}_{i j k} \\
& =\log \frac{p_{111} p_{100} p_{010} p_{001}}{p_{000} p_{011} p_{101} p_{110}} \approx \log \frac{\hat{n}_{111} \hat{n}_{100} \hat{n}_{010} \hat{n}_{001}}{\hat{n}_{000} \hat{n}_{011} \hat{n}_{101} \hat{n}_{110}}
\end{aligned}
$$

- $\hat{n}_{a b c}$ is the number of samples that look like $(0, \ldots, 0, a, b, c, 0, \ldots, 0)$
- NB: This solves the untruncated problem.

Model-free interactions

- Surprisal of a state $X=x:-\log p(x)$
- Interactions are sums of surprisals:

$$
\begin{aligned}
I_{i} & =\log \frac{p_{1}}{p_{0}}=\log p_{1}-\log p_{0} \\
I_{i j} & =\log \frac{p_{11} p_{00}}{p_{01} p_{10}}=\log p_{11}+\log p_{11}-\log p_{01}-\log p_{10} \\
I_{i j k} & =\log \frac{p_{111} p_{100} p_{010} p_{001}}{p_{000} p_{011} p_{101} p_{110}}=\ldots
\end{aligned}
$$

- What determines the alternating signs? (Even/odd)
- Similar to mutual information

Mutual information

- Higher-order mutual information:

$$
\begin{aligned}
M I(X, Y) & =H(X)+H(Y)-H(X, Y) \\
M I(X, Y, Z) & =H(X)+H(Y)+H(Z)-H(X, Y)-H(X, Z)-H(Y, Z)+H(X, Y, Z)
\end{aligned}
$$

- Sign determined by even/odd number of variables
- Inclusion/Exclusion principle
- Higher-order structure is captured by Möbius inversion

Part 3

Part 3:
 Higher-order structure as Möbius inversions

- The Möbius inversion formula
- Interactions and information as inversions
- Dualities

Möbius function

- Subsets form a lattice under inclusion:
- $S \leq T \Longleftrightarrow S \subseteq T$
- Capture relationships in poset P : Möbius function $\mu_{P}: P \times P \rightarrow \mathbb{R}$

$$
\mu_{P}(x, y)= \begin{cases}1 & \text { if } x=y \\ -\sum_{z: x \leq z<y} \mu_{P}(x, z) & \text { if } x<y \\ 0 & \text { otherwise }\end{cases}
$$

Möbius inversion

Definition: Möbius inversion over a poset, Rota (1964)

Let P be a poset (S, \leq), let $\mu_{P}: P \times P \rightarrow \mathbb{R}$ be the Möbius function, and let $g: P \rightarrow \mathbb{R}$ be a function on P. Then, the function

$$
f(y)=\sum_{x \leq y} \mu_{P}(x, y) g(x)
$$

is called the Möbius inversion of g on P. Furthermore, this can be inverted:

$$
f(y)=\sum_{x \leq y} \mu_{P}(x, y) g(x) \Longleftrightarrow g(y)=\sum_{x \leq y} f(x)
$$

Möbius function: Examples

- Let $P=(\mathbb{N}, \leq), f: P \rightarrow \mathbb{R}, \quad F(x)=\sum_{y \leq x} f(y)$.
$\mu(a, a)=1$
$\mu(a, a+1)=-1$
$\mu(a, a+k)=0$, for $k>1$
- Then the Möbius inversion of F is $f(x)=\sum_{y \leq x} \mu(y, x) F(y)=F(x)-F(x-1)$
- A discrete version of the fundamental theorem of calculus!
- If P is \mathbb{N} ordered by divisibility, then μ is the inverse of the Riemann zeta function.
- Given an interval $[a, b]$ on a poset $P, \mu(a, b)$ is the reduced Euler characteristic of the associated simplicial complex.

Möbius functions on Boolean algebras

A powerset ordered by inclusion is a Boolean algebra.

$$
\begin{aligned}
\mu(\emptyset,\{Y, Z\}) & =-\sum_{\eta: \emptyset \leq \eta<\{Y, Z\}} \mu(\emptyset, \eta) \\
& =-(\mu(\emptyset, \emptyset)+\mu(\emptyset,\{Y\})+\mu(\emptyset,\{Z\})) \\
& =-(1+\mu(\emptyset,\{Y\})+\mu(\emptyset,\{Z\})) \\
& =-(1-\mu(\emptyset, \emptyset)-\mu(\emptyset, \emptyset)) \\
& =-(1-1-1)=1
\end{aligned}
$$

- On a Boolean algebra $\mu(x, y)=(-1)^{|y|-|x|}$

- The Möbius inversion of the intersection cardinality function $|*|: S \mapsto\left|\bigcap_{i} S_{i}\right|$ is the union cardinality.
- e.g. $|X \cup Y \cup Z|=|X|+|Y|+|Z|-|X \cap Y|-|X \cap Z|-|Y \cap Z|+|X \cap Y \cap Z|$
- Exactly the sign-alternating sums we saw before!

Möbius inversion

On a Boolean algebra P of variables T :

- Mutual information is the Möbius inversion of marginal entropy:

$$
M I(\tau)=(-1)^{|\tau|-1} \sum_{\eta \leq \tau} \mu_{P}(\eta, \tau) H(\eta)
$$

- Pointwise mutual information is the Möbius inversion of marginal surprisal:

$$
\operatorname{pmi}(\tau)=(-1)^{|\tau|-1} \sum_{\eta \leq \tau} \mu_{P}(\eta, \tau) \log p(\eta)
$$

- Model-free interactions are the Möbius inversion of surprisal:

$$
I(\tau ; T)=\sum_{\eta \leq \tau} \mu(\eta, \tau) \log p(\eta=1, T \backslash \eta=0)
$$

Dual quantities

- If $P=(S, \leq)$ is a lattice, then $P^{\text {op }}=(S, \preceq)$ (where $a \preceq b \Longleftrightarrow a \geq b$) is a lattice.
- What is dual mutual information

$$
M I^{*}(\tau)=\sum_{\eta \preceq \tau}(-1)^{|\eta|+1} H(\eta) ?
$$

- Dual MI of a single variable X:

$$
\begin{aligned}
M I^{*}(X) & =M I(X, Y, Z)-M I(Y, Z) \\
& =M I(Y, Z \mid X)=\Delta_{X}
\end{aligned}
$$

- Conditional/differential mutual information.
- $M I^{*}(X, Y)=H(X, Y, Z)-H(X, Y)=H(X \mid Y, Z)$
- In general context $T: M I^{*}(\tau)=M I(T \backslash \tau \mid \tau)$

Dual quantities

- Dual interactions $I^{*}(\tau ; T)=\sum_{\eta \preceq \tau}(-1)^{|\eta|-|\tau|} \log p(\eta=1, T \backslash \eta=0)$
- Dual interaction of a single variable X in a system with 3 variables:

$$
\begin{aligned}
I^{*}(X ;\{X, Y, Z\}) & =I(X, Y, Z)+I(Y, Z) \\
& =\log \frac{p_{111} p_{100}}{p_{110} p_{101}}
\end{aligned}
$$

- This is $\left.I(Y, Z)\right|_{X=1}$.
- Dual interactions are interactions in a context of 1 s :
- $I^{*}(\tau ; T)=\left.I(T \backslash \tau)\right|_{\tau=1}$
- Outeractions

Summary

- Mutual information is the Möbius inversion of marginal entropy.
- Pointwise mutual information is the Möbius inversion of marginal surprisal.
- Model-free interactions are the Möbius inversion of surprisal.
- Dual mutual information is conditional mutual information.
- Dual interactions are interactions in a context of 1 s .
- NB: These all imply an intuitive inverse relation:

$$
f(y)=\sum_{x \leq y} \mu_{P}(x, y) g(x) \Longleftrightarrow g(y)=\sum_{x \leq y} f(x)
$$

Summary

- Define: eval $_{T}: \log p(R=r) \mapsto \log p(R=1, T \backslash R=0)$
- Then:

Example: $T=\{X, Y, Z\}$ and $R=\{X, Y\}$

Part 4

Part 4: Results

- What do nonzero interactions correspond to?
- Logic gates, causal dynamics, and di/triadic distributions.
- How do interactions differ from information?

Results: Synergy in logic gates

- What does a 3-pt interaction correspond to?

$$
I_{A B C}=\log \frac{p_{111} p_{100} p_{010} p_{001}}{p_{000} p_{011} p_{101} p_{110}}
$$

- Maximally positive \Longrightarrow only terms in numerator are >0.

A	B	C
0	0	1
0	1	0
1	0	0
1	1	1

- XNOR gate!
- (XOR is maximally negative)

Results: Synergy in logic gates

- XOR is synergistic: Knowing all but one of the input bits gives zero information on output.
- It is symmetric!
- Can be generalised to n -point XOR :

$$
X_{n+1}=\sum_{i=1}^{n} X_{i} \quad \bmod 2
$$

- Still maximally synergistic
- Still symmetric (consider $X_{i} \leftrightarrow X_{n+1}$)
- Still maximal 3-point interaction (parity determines sign)

Results: Synergy in logic gates

- Let $p($ allowed state $)=p$ and $p($ forbidden state $)=\epsilon$.
- Let $I=4 \log \frac{p}{\epsilon}$
- Interactions have higher resolution than MI.
- AND~NOR and OR~NAND.
- Def. $\boldsymbol{J}_{A}=I_{A B C}-I_{B C}$
- J_{A} has perfect resolution.
- $J_{A}^{\mathrm{XNOR}}>\boldsymbol{J}_{A}^{\mathrm{NOR}}>J_{A}^{\mathrm{AND}}$.

\mathcal{G}	$\boldsymbol{I}_{\boldsymbol{A B C}}$	$\boldsymbol{M I}_{\boldsymbol{A B C}}$	$\boldsymbol{J}_{\boldsymbol{A}}$
XNOR	I	-1	$\frac{3}{2} I$
XOR	$-I$	-1	$-\frac{3}{2} I$
AND	$\frac{1}{2} I$	-0.189	$\frac{1}{2} I$
OR	$-\frac{1}{2} I$	-0.189	$-I$
NAND	$-\frac{1}{2} I$	-0.189	$-\frac{1}{2} I$
NOR	$\frac{1}{2} I$	-0.189	I

- Ordered by synergistic content.

Results: Causal dynamics

Dynamics

Causal graph
Correlation

Partial corr. information

Mutual
MFI

Chain

Fork

$$
\stackrel{\text { A }}{\left({ }^{-}\right)^{B}}
$$

Add. collider

Mult. collider $C=A \times B$

Add. collider \& chain
$C=\frac{1}{2}(A+B)$

Mult. collider \& chain
$C=A \times B$

Results: Dy- and Triadic distribution

- 6 variables: $\left(X_{0}, X_{1}, Y_{0}, Y_{1}, Z_{0}, Z_{1}\right)$
- Dyadic: $X_{0}=Y_{1}, Y_{0}=Z_{1}, Z_{0}=X_{1}$
- Triadic: $X_{0}+Y_{0}+Z_{0}=0 \bmod 2$

$$
\text { and } X_{1}=Y_{1}=Z_{1}
$$

- Variables combined to form categorical variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$.
- $\left(X_{0}, X_{1}\right)=(1,1) \Longrightarrow \mathbf{X}=3$
- Indistinguishable by almost all information measures. (James \& Crutchfield, 2017)
- PID: has to identify in- and output variables.

Dyadic				Triadic			
X	Y	Z	$\mathrm{P}(\mathrm{s})$	X	Y	Z	$\mathrm{P}(\mathrm{s})$
0	0	0	p	0	0	0	p
0	2	1	p	1	1	1	p
1	0	2	p	0	2	2	p
1	2	3	p	1	3	3	p
2	1	0	p	2	0	2	p
2	3	1	p	3	1	3	p
3	1	2	p	2	2	0	p
3	3	3	p	3	3	1	p
	else		ϵ		else		ϵ

- Symmetrised categorical interactions: I
- Dyadic: $\mathbf{I}_{X Y Z}=\log 1=0$
- Triadic: $\mathbf{I}_{X Y Z}=64 \log \frac{\epsilon}{p}$

Part 5

Part 5: Conclusion

- Teaser: model-free interactions on real data
- Conclusion

Teaser: model-free interactions on real data

- To estimate $p\left(X_{i}=\alpha, X_{j}=\beta \mid \underline{X}=0\right)$, count samples:

$$
X=(0,0, \ldots, \alpha, \ldots, \beta, \ldots, 0)
$$

- Trick: find a set $\mathrm{MB}_{X_{i}} \subset \underline{X}$ s.t. $p\left(X_{i} \mid \underline{X}\right)=p\left(X_{i} \mid \mathrm{MB}_{X_{i}}\right)$

- MB: Markov Blanket
- $X_{i} \Perp X \backslash \mathrm{MB}_{X_{i}} \mid \mathrm{MB}_{X_{i}}$
- d-separates X_{i} from 'the rest'
- Finding minimal MB is 'Causal Rung 2-hard'

Teaser: model-free interactions on real data

- Estimation on real data becomes tractable using Markov blankets.
- Error from MB estimate is bounded by pointwise mutual information (a good thing)
- MFIs in gene expression data: 1000 genes, 20k cells.
- Interactions at up to seventh order.
- $I_{G_{1}, G_{2}, G_{3}, \ldots} \neq 0 \Longrightarrow$ non-random gene expression pattern.
- These revealed types of neurons and pathways not found in embryonic mice before.

Conclusion

- Entropy-based information measures cannot distinguish all causal dynamics.
- Ising-like interactions can offer higher resolution.
- Uniquely identify causal dynamics \& logic gates.
- Möbius inversions capture higher-order structure:
- (Pointwise) mutual information, Ising interactions are inversions on Boolean algebra
- All have meaningful duals.
- Other lattices:
- categorical Ising-like interactions.
- PID: Möbius inversion on redundancy lattice.
- Higher-order interactions are important, and estimable.

References

- A Jansma, Higher-Order Interactions and Their Duals Reveal Synergy and Logical Dependence beyond Shannon-Information Entropy 25 (4), 648, 2023
- SV Beentjes \& A Khamseh, Higher-order interactions in statistical physics and machine learning Physical Review E, 102(5), 2020
- ET Jaynes, Information theory and statistical mechanics, Physical Review 106 (4), 620, 1957
- RG James \& JP Crutchfield, Multivariate dependence beyond Shannon information Entropy 19, 531, 2017
- RP Stanley, Enumerative combinatorics, Cambridge studies in advanced mathematics, 2011

