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Abstract

This thesis presents an overview of the ways in which the Lie algebra/group E
8

appears in

di↵erent descriptions of a �z perturbed critical 1D transverse Ising model. We first review

work by Alexander Zamolodchikov who established the link by looking at the integrals

of motion and the conserved charge bootstrap equations. We then construct some field

theories that contain E
8

as an algebra, group, or lattice and lead us to the conformal

field theory associated to the critical Ising model. After this, our attention turns towards

discrete lattice models. The so-called dilute A
3

model contains the E
8

particles in its scat-

tering matrix, and we have a description of these particles in terms of its thermodynamic

Bethe Ansatz. Our goal is to express these Bethe Ansatz solutions in terms of simple

fermion occupation quantum numbers, but we first practice this translation in the simpler

case of the critical q-state Potts model. After this, we extend the mapping to the case of

the dilute A
3

model and provide a way to express its E
8

particles in terms of free fermions.

While we indeed get a consistent free fermion description, we don’t find enough solutions

to the Bethe Ansatz equations to make a full identification between the E
8

particles and

free fermions.
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Oekie’s verhalen over wiskunde, puzzels, en dingen van Arie hebben er aan bijgedragen dat

ik al op vroege leeftijd kon proeven van wiskunde en geometrie. Toen ik toch even van het

wetenschappelijke pad af geraakte was daar tante Caro. Met haar kennis van mij en de

academische wereld kan zij altijd goed advies geven, en gaf ze mij de moed om uiteindelijk

de stap naar natuurkunde te maken.

Ook tijdens mijn studie heb ik veel mensen ontmoet die ik wil bedanken voor hun hulp.

Hulp bij huiswerk, eten koken, en het inrichten van een grotemensen leven. In het bijzonder

hebben Evita, David, Sander en Roshell mij geholpen om gedurende mijn studietijd mens

te blijven, onzekerheden te omarmen, en kritisch te blijven op de wereld.

And lastly, my love Julia. You have seen me in many states over the last year, but supported

me through all of them and made great e↵ort to be there for me when I needed it. Only

your warmth can turn me into a human again when I leave the library as a robot.

Finishing this thesis also means leaving theoretical physics behind me. This is not out of

disillusion with the field, but rather a consequence of my discovery of yet another horizon:

2



biology. I am grateful to Bernard for bringing the PhD position to my attention, but no

less also to the supervisor of my Bachelors thesis: dr. Greg Stephens, who introduced me

into the wondrous world of biophysics.

Thank you all.

3



Contents

1 Introduction 6

2 The Ising Model as a CFT 11

3 Zamolodchikov’s Conjecture 19

3.1 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 S-matrix theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 A�ne Lie Algebraic Descriptions 31

4.1 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 A�ne extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 WZW models and the coset construction . . . . . . . . . . . . . . . . . . . 37

4.4 Toda field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Hidden geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Back to Lattice Models 52

5.1 Transfer matrix spectrum of a diagonal Ising model . . . . . . . . . . . . . 53

5.2 From spin models to loop- and vertex-models . . . . . . . . . . . . . . . . 56

5.3 The twisted algebraic Bethe Ansatz . . . . . . . . . . . . . . . . . . . . . . 70

6 A Path Forward 80

6.1 The dilute A
3

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Free fermions in the critical dilute A
3

model . . . . . . . . . . . . . . . . . 85

6.3 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusion 90

A Appendix 97

A.1 The Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.2 Coxeter orbit code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.3 Commutator of diagonal transfer matrix and 1D quantum Ising Hamiltonian 102

A.4 The diagonal Ising transfer matrix in fermion basis. . . . . . . . . . . . . . 105

A.5 Wol↵-Zittartz eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4



CONTENTS

A.6 Derivation of the twisted Bethe equations . . . . . . . . . . . . . . . . . . . 110

5



1
Introduction

As the title of this thesis reveals, the central model that we study in this thesis is the Ising

model. It was introduced in 1920 as a model of ferromagnetism by Wilhelm Lenz, then at

the University of Rostock. The quantum mechanical nature of reality was just starting to

show itself, and Lenz was thinking about the magnetic moments of molecules in a crystal.

This moment might become quantised by interactions with the crystal lattice, he argued1,

making the molecules polar. In his own words:

”In a quantum treatment certain angels ↵ will be distinguished, among them

in any case ↵ = 0 and ↵ = ⇡. If the potential energy W has large values in

the intermediate positions, as one must assume taking account of the crystal

structure, then the positions will be very seldom occupied, Umklapp processes

will therefore occur very rarely, and the magnet will find itself almost exclusively

in the two distinguished positions, and indeed on the average will be in each one

equally long.”[24]

Ernst Ising joined Lenz in Hamburg as his doctoral student in 1922 and worked with him

on this model of ferromagnetism, summarising his final dissertation on the subject in an

article published in 1925 with the title Beitrag zur Theorie des Ferromagnetismus [16].

Most famously, Ising (correctly) showed that when the molecules are arranged in a one

dimensional configuration, the system as a whole cannot undergo a phase transition, and

he then (incorrectly) extended this finding to higher dimensions. Since phase transitions

1In fact, he introduced the model only two years before the famous Stern-Gerlach experiment would
conclusively show the quantum mechanical nature of these magnetic moments.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Ernst Ising (left) and Wilhelm Lenz (right)

were observed to be fundamental phenomena when talking about magnetism, the commu-

nity quickly left the Lenz-Ising Model for what it was, and moved on to more complicated

models to explain ferromagnetism (which started the investigation into what we now refer

to as Heisenberg models). After obtaining his doctorate, Ising left academia, but quickly

quit his new job to become a teacher at a German school, only to be barred from teaching

by the upcoming Nazi-regime. During the War, Ising worked as a shepherd and a railroad

worker, and it was only in 1947 that he emigrated to the United States and was able to

find work at a university again.

It Took a Chemist What Ising didn’t know was that while he had been isolated from the

scientific community, a discovery by Rudolf Peierls in 1936 had made Ising’s model world-

famous. Contrary to what Ising had assumed, Peierls showed that in dimensions higher

than one, the Ising model actually does contain phase transitions, and its dynamics turn

out to be extremely rich. In fact, not only is it a powerful model to describe magnetism,

but it actually turned out to describe many phenomena in wildly di↵erent fields, focusing

a lot of attention on finding its solution (e.g. its free energy and magnetisation as a

function of temperature and coupling strengths). Proving too di�cult for physicists and

mathematicians, it took a chemist to find the mathematical solution, and in 1944, three

years before Ising reentered academia, Lars Onsager solved the anisotropic two-dimensional

Ising model on a square lattice.

Nowadays, the Ising model is one of physics’ most famous and beloved models and ubiq-
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CHAPTER 1. INTRODUCTION

uitous in all statistical fields. A look at its Hamiltonian elucidates why:

H
Ising

= �
X

<i,j>

Jij�i�j � µ
X

i

hi�i (1.1)

It describes objects i and j, in states �i and �j, interacting with interaction strength Jij,

as long as the as of yet undefined sum over < i, j > includes them, and an interaction hi

that involves only one object i.

Originally, it was formulated to have the objects be molecules, the states � the dipole ori-

entations, µ the molecular magnetic moment, and h an external magnetic field, resulting

in the model that Lenz had in mind. However, we now see why the model could become

so wildly applicable, since its components may refer to wildly di↵erent things. First of

all, the Hamiltonian makes no mention of a lattice, so it can be defined on any ordered or

disordered graph (which is how it can be used to describe e.g. amorphous glasses). The

sum over < i, j > specifies no support, so while Onsager solved it for nearest neighbours

only, it could in general contain all possible combinations. The states � also don’t have to

be binary numbers, and could take on values in any domain. In fact, making them take

values in representations of a certain Lie algebra results in the quantum mechanical version

of the Ising model which we will encounter later on in this thesis.

As such, Ising models are being used to describe and understand the dynamics of social

interactions [30], networks of gene regulation [20], flocks of birds [4], networks of neurons in

the brain [1], etc. Looked at in full generality, the Ising model is thus amodel of interactions

on a graph, its scope only limited by the fact that only terms with one or two nodes appear.

CFTs That last remark, about no higher interactions appearing, actually brings us to

another fundamental remark to make in this introduction that will bring the Ising model

into a language more familiar to modern physicists. The theory that explains why so many

very complex (e.g. a flock of 105 birds or network of 109 neurons) models can be captured

by a model only coupling two nodes at a time, was developed in the second half of the

20th century and goes under the name of Renormalisation Group (RG) theory. It is usu-

ally formulated in the language of quantum field theory, where the partition function is

a path integral over field configurations of some action that contains all possible interac-

tions. However, by integrating out high (UV) degrees of freedom, or equivalently, coarse
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CHAPTER 1. INTRODUCTION

graining the underlying spacetime, the action can be rewritten with the the same fields,

but with fewer interactions and adjusted coupling parameters, resulting in e↵ective field

theories. Each time we coarse grain, we arrive at a new theory, and we are lead to study

the behaviour of theories under the repeated application of this RG process, generating

a type of flow through theory-space. It turns out that this flow can have certain fixed

points: theories that stay the same when coarse graining the spacetime. Looking at the

theory at di↵erent scales then shows identical physics, and we are led to conclude that

there is no characteristic scale present in the theory. In fact, the fixed points of this flow

are invariant under a wide class of symmetries called conformal symmetries that includes

more than simple scale transformations. These theories are aptly called Conformal Field

Theories (CFTs) and have been omnipresent in physics ever since.

One of the reasons these CFTs became so popular is the fact that in two dimensions the

symmetries alone can allow you to calculate many, if not all, interesting things. Finding

a theory with this intricate set of symmetries might seem rare, but it was observed that

some models actually started showing a lack of scale around their critical points, enabling

this powerful framework to be applied to solve the model.

Eight Particles However, a natural question arises: By leaving the critical point, we

might break the full conformal symmetry to some smaller subgroup, but are there cases

in which even this lower symmetry is constraining enough to fix the theory? If so, then

even o↵-critical theories could be solvable, an alluring thought... This question was also on

Alexander Zamolodchikov’s mind in 1989, when he perturbed the CFT associated to the

critical Ising model. He found two deformations that preserved integrability2: a thermal

one, and a magnetic one. Making some natural assumptions, he was able to write down

the full scattering matrix of this theory, and discovered that this theory contained eight

particles. He noticed that this spectrum contained some intriguing numbers, that all

seemed to be related to properties of the largest semisimple Lie algebra E
8

; the masses

of the particles are related to each other through its Cartan matrix, and the conserved

quantities are characterised by numbers that coincide with the exponents of E
8

, modulo

30, its Coxeter number. On top of that, there are rank(E
8

) = 8 particles. All of this,

in combination with his personal communication with Fateev, lead Zamolodchikov to his

2We have not defined the concept of integrability yet, but will come back to this later. For now, it can
be taken to mean the same as solvability.
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CHAPTER 1. INTRODUCTION

conjecture:

”By the way this E
8

structure strongly suggests that particular [lattice models]

associated to the weights of E
8

can be constructed whose scaling limit would

describe the universality class of the critical Ising model in a magnetic field.”[37]

This ‘coincidence’, and the mythical status of E
8

throughout physics and mathematics,

motivated a significant amount of research into the relationship between CFTs and Lie

groups/algebras, which is most explicit in Wess-Zumino-Witten models and Toda field

theory (as we will see later in this thesis). Deep connections became visible between some

Lie algebras and the CFTs describing physical systems, but research eventually took o↵

in di↵erent directions and many parts of these connections were left unexplained. Then in

2010, an experiment was able to reproduce the system Zamolodchikov originally investi-

gated (a kind of 1-dimensional magnet), and found two particles that have a mass-ratio as

predicted by the original paper from ’89. A quick review of this experiment is presented in

the appendix A.1. This discovery sparked new interest in the problem, and inspired this

thesis.

In the next chapter, we will first develop an understanding of the Ising model, which is

originally a discrete lattice model, as a field theory. We will then follow and reproduce

Zamolodchikov’s reasoning that lead him to his conjecture about the link to E
8

. To moti-

vate the existence of this link, we will further explore some Lie algebraic field theories, and

the way they link E
8

to the Ising CFT, before moving on to explicit lattice models. We

don’t have an exact solution to the magnetic Ising model, but we will study a model that

lies in its universality class, and has been shown to posses the same excitation spectrum

in its thermodynamic limit[3]. It is a type of spin-one Ising model, called the dilute A
3

model. We can solve it with a Bethe Ansatz approach, but also study its free fermion

structure, and we set out to link the two descriptions to each other, in the hope that we

can understand the E
8

particles in terms of elementary excitations on the lattice. We first

practice such a translation in terms of the simpler critical Ising model, and then pave the

way to do the same for the dilute A
3

model.

That’s a lot to cover, so let’s begin.
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2
The Ising Model as a CFT

Physicists can be notoriously ambiguous and paradoxical in their terminology. I will most

likely continue this tradition throughout this thesis, but hope to eliminate as much con-

fusion as possible by sometimes pointing out where I will be imprecise. In the following

chapters:

• I will use the word Ising model a lot. This will sometimes refer to the classical version

from the introduction, where spins take binary scalar values, but might also refer

to the corresponding quantum chain where the spins take values in SU(2) algebra

representations. When unspecified, I rely on the context to clear things up.

• When I say Ising model, it might also be unclear sometimes whether I mean the ver-

sion with or without an external magnetic field. As a rule of thumb: 2D classical Ising

models have their external fields turned o↵, while 1D quantum Ising models have a

term in their Hamiltonian with a magnetic field along the transverse x-direction.

When there are additional longitudinal fields present (those breaking the Z
2

symme-

try of the ground state), I will use the term magnetic Ising models.

• I will also talk about dimensions a lot, and whenever I describe the number of dimen-

sions, I will always, unless emphatically stated otherwise, refer to spatial dimensions.

So when I say 2D, I mean 2(+1)D.

• When writing down Boltzmann weights for statistical ensembles, I will generally

absorb the inverse temperature into the coupling constants without mentioning this

fact explicitly.
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CHAPTER 2. THE ISING MODEL AS A CFT

• ~ = 1.

• Finally, I will vary with my summation notation. Where space allows it or clarifi-

cation is necessary, I will use explicit sums, but other times I might imply Einstein

summation by repeated indices.

QC Mapping With that out of the way, let’s talk about statistical models. Recall first

from elementary quantum field theory that any partition function can be written as a kind

of discrete, Euclidean path integral over intermediate states:

Z =
X

x

X

x1,x2,...,xN

hx| e�Hd�t |x
1

i hx
1

| (...) |xNi hxN | e�Hd�t |xi (2.1)

Where the set {|xii} is a complete set of eigenstates of the Hermitian Hamiltonian Hd of

the d-dimensional quantum system, making |xii hxi| simply a resolution of the identity. It

is then easily seen that (2.1) is just Tr(e�HdN�t), and it becomes the continuous quantum

path integral when �t goes to zero while keeping N�t fixed.

Now note that this partition function can also be written as Tr
⇥
(e�Hd�t)N

⇤
, which is ac-

tually precisely the partition function of a (d+1)-dimensional classical system composed

of N copies along the (d+1)th direction of d-dimensional units, each with transfer ma-

trix e�Hd�t. This surprising correspondence between d-dimensional quantum systems and

(d+1)-dimensional classical systems is known as the quantum to classical (QC) mapping.

This QC mapping can be used to show that a 2D classical Ising model can be related to a

1D quantum Ising model. More precisely, the partition functions of systems described by

the following two Hamiltonians are the same [27]:

H
classical

= �
X

i,j

Jh�i,j�i+1,j + Jv�i,j�i,j+1

(2.2)

Ĥ
quantum

= ��
X

i

�̂z
i �̂

z
i+1

� �
X

i

�̂x
i (2.3)

Where:

• The classical Hamiltonian is defined on a 2D lattice, the quantum one on a 1D lattice.
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CHAPTER 2. THE ISING MODEL AS A CFT

• Jh and Jv are respectively the horizontal and vertical couplings between sites on the

2D lattice.

• The classical sites take the values ±1, while the quantum sites are decribed by the

Pauli matrices �i.

• I introduced hats to emphasise quantum operators (but from now on will leave them

implicit).

• � = Jh/T and � = e�2Jv/T

Fermions As mentioned in the introduction, we want to develop an understanding of these

two equivalent lattice models in terms of a field theory. The seminal paper by Schultz,

Mattis and Lieb [28] presented a way to transform the Ising model into a model of fermions,

and a nice way to turn this model into a continuous field theory can be found in [38]. They

start by defining the usual ladder operators on the quantum 1D Ising chain:

�+

i =
1

2
(�x

i + i�y
i ) (2.4)

��
i =

1

2
(�x

i � i�y
i ) (2.5)

These represent respectively spin raising/lowering operators along our quantisation axis,

and it is tempting to look at them as creation operators of some quasi-particle that we’ll

refer to as a Paulion, and identify c
(†)
i = �

�(+)

i . On a single site, we can write these Paulion

operators as

�+ =

0

BB@
0 1

0 0

1

CCA (2.6)

�� =

0

BB@
0 0

1 0

1

CCA (2.7)

Which indeed gives the usual fermionic anticommutator {�+, ��} = 1. So far so good.

However, things turn messy once we start to look at the behaviour of these operators on

the whole chain. Fermionic operators should anticommute when evaluated on di↵erent sites
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CHAPTER 2. THE ISING MODEL AS A CFT

of the lattice, but a quick inspection yields [�+

i , �
�
j ] = 0 for i 6= j: our Paulion operators

commute. This problem of mixed commutation relations can be solved by a Jordan-Wigner

transformation, yielding proper fermions, and a writing their Fourier transform in Bogoli-

ubov basis results in a remarkably simple version of our Hamiltonian (see e.g. [28], [38] or

[21]), which can then be made continuous around the critical point to arrive at the field

theory of a massive free fermion.

Disorder Operators Here, however, we will use another way to arrive at the same field

theory. Following Mussardo [23], we will study the algebraic properties of so-called disorder

operators on an infinite 1D lattice. Define the following operators µi
r on the lattice dual

to our original Ising lattice:

µ3

r+1/2 :=
rY

i=�1
�x
i (2.8)

µ1

r+1/2 = �z
r�

z
r+1

(2.9)

Where index r + 1/2 refers to the node on the dual lattice that is between position r and

r + 1 of our original lattice. Note that µ3

r+1/2 flips all spins to the left of r + 1, e↵ectively

creating a kink along the chain. In doing so, it a↵ects the boundary condition on the

leftmost edge, which is why they are defined on the infinite lattice to avoid inconsistencies.

Like our original spin operators, they are involutory: (µi)2 = 1, and they obey the same

commutation relations. A quick check verifies the following identities:

h
µ1

r+1/2, µ
3

r0+1/2

i
= 2�r,r0 (2.10)

h
µ3

r+1/2, µ
3

r0+1/2

i
= 0 (2.11)

h
µ3

r+1/2, �
x
r0

i
= 0 (2.12)

µ3

r�1/2µ
3

r+1/2 = �x
r (2.13)
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CHAPTER 2. THE ISING MODEL AS A CFT

Remarkably, when we take our original Hamiltonian (2.3) to be on an infinite 1D lattice:

H(�,�) = �
1X

i=�1

�
��z

i �
z
i+1

+ �x
i

�
(2.14)

We see that it can be written in terms of disorder operators as:

H(µ,�) = ��
1X

r=�1

⇣
��1µ3

r�1/2µ
3

r+1/2 + µ1

r+1/2

⌘
(2.15)

That is, the order and disorder Hamiltonians are related by:

H(�,�) = �H(µ,��1) (2.16)

This remarkable fact thus links a description in terms of order operators at coupling � to

a description in terms of disorder operators at coupling 1/�. Since both describe the exact

same system, when the ordered description becomes critical at coupling �c, the disordered

description must be critical at 1/�c. If we now add some physical intuition and demand

that there be only one critical point in the Ising model, we can immediately conclude that

the critical point must be at �c = 1.

Now to get to the equations of motion, let’s establish ourselves in the Heisenberg picture of

quantum mechanics, and make our operators time dependent. Denote by @⌧ the derivative

with respect to imaginary time, we have for a general operator O then that @⌧O(⌧) =

[H,O]. The time dependence of our operators then follows immediately from their algebraic

properties.

Defining the following operators1:

 
1

(r) = �3

rµ
3

r+1/2 (2.17)

 
2

(r) = �3

rµ
3

r�1/2 (2.18)

We get the equations of motion[23]:

1Note that we have switched our notation from position as an index to full functional dependence on
position: a sign of things to come.
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CHAPTER 2. THE ISING MODEL AS A CFT

@⌧ 1

(r) = � 
2

(r) + � 
2

(r + 1) (2.19)

@⌧ 2

(r) = � 
1

(r) + � 
1

(r � 1) (2.20)

The Scaling Limit If we now want to take the limit to continuous space, we should look

at the limit where r + 1 becomes r + ✏, and ✏ ! 0. To get rid of the ambiguity around

what to make of  i(r + 1), we note the following, which is true only in exactly this limit:

@r 2

(r) = ( 
2

(r + ✏)�  
2

(r))/✏ (2.21)

=) � 
2

(r + ✏) = �✏@r 2

(r) + � 
2

(r) (2.22)

So that we can write the equation of motion for  
1

(r) as:

@⌧ 1

(r) = �(1� �) 
2

(r) + �✏@r 2

(r) (2.23)

And similarly for  
2

(r):

@⌧ 2

(r) = �(1� �) 
1

(r)� �✏@r 1

(r) (2.24)

We are now finally able to completely let ✏ go to zero and arrive at a continuous theory

with the following equations of motion:

(�0@t + ��3@r +m) = 0 (2.25)

Where we have defined the following things:

• The spinor field  (r) =

0

BB@
 
1

(r)

 
2

(r)

1

CCA

• t = ✏⌧

• m = 1��
✏
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CHAPTER 2. THE ISING MODEL AS A CFT

• The Cli↵ord �-matrices: �0 = �x and �3 = �z

We have accomplished our first goal: a field theory describing the scaling limit of the Ising

model. But the real power of this formalism lies at the critical point � = 1. There, the

mass vanishes, and we get a free fermion theory whose equations of motion follow from the

action:

S =

Z
d2x  �0�µ@µ (2.26)

To rewrite this action into a language that is more familiar in the context of conformal

field theory, we define new, complex light-cone coordinates:

z = t+ ix (2.27)

z̄ = t� ix (2.28)

So that

@ :=
@

@z
=

1

2

⇣ @
@x

@x

@z
+

@

@y

@y

@z

⌘
= @x � i@y (2.29)

@̄ :=
@

@z̄
= @x + i@y (2.30)

And new fermion fields

 =
 i + i 

2p
2

(2.31)

 ̄ =
 i � i 

2p
2

(2.32)

In these new coordinates, our critical action reduces to

S =

Z
dzdz̄ ( @̄ +  ̄@ ̄) (2.33)

Our equations of motion are now easily seen to be the Cauchy-Riemann equations, making

 and  ̄ resp. holomorphic and antiholomorphic functions. This action is the famous c = 1

2

17



CHAPTER 2. THE ISING MODEL AS A CFT

conformally invariant free fermion action, and extensively studied in all CFT literature.
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3
Zamolodchikov’s Conjecture

3.1 Perturbations

Noether’s theorem is arguably physics’ most loved theorem. It relates symmetries to con-

served quantities. If a system contains a conserved quantity, then one can impose the

conservation of this quantity to solutions of the equations of motion to restrict the possi-

bilities, and help solve for trajectories. Similarly, conformal symmetry can constrain the

correlation functions, and in doing so make the theory solvable. Remarkably however, there

are perturbations of CFTs that break conformal symmetry, but leave the theory solvable.

Deformations This lead Zamolodchikov to look at deformations of the c = 1

2

Ising CFT

in his now famous paper [37]. This CFT contains two nontrivial primary operators (or

fields), ✏ = �
1,3 and � = �

1,2, where the notation �r,s refers to the field at position

(r, s) in the corresponding Kac-table of the minimal model. The first corresponds to a

Z
2

-even thermal perturbation, but the second corresponds to the more interesting mag-

netic perturbation. The three primaries (�, ✏ and the identity 1) define three holomorphic

highest weight modules by repeated action on them by the Virasoro modes Ln for n < 0

(And three antiholomorphic ones by repeated action of the antiholomorphic Ln). Through

the operator-state correspondence, these primary operators correspond to highest weight

states, and their Verma modules are not only a nice way to generate all the operators,

but they actually generate the full Hilbert space associated to our Ising CFT in a highest

weight representation.

When perturbing this CFT, we thus have the choice of inserting Z
2

symmetric operators
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(✏ and 1) or the Z
2

odd operator �. Zamolodchikov chose the latter. Introducing the

parameter h to control the strength of this perturbation, we get the new action:

S�1
2
= S 1

2
+ h

Z
�(z, z̄)dzdz̄ (3.1)

Where S 1
2
is the action corresponding to the original c = 1

2

CFT. Since the original S 1
2

had total dimension (0, 0), the perturbation must also have dimensions (0, 0), and we can

conclude the following:

[h

Z
�(z, z̄)dzdz̄] = (0, 0) (3.2)

[h] + [�(z, z̄)] + [dzdz̄] = (0, 0) (3.3)

[h] + (
1

16
,
1

16
) + (�1,�1) = (0, 0) (3.4)

=) [h] = (
15

16
,
15

16
) (3.5)

This perturbation thus results in a few (related) things:

• It introduces a dimensionful quantity h.

• It introduces a typical scale for the theory.

• Conformal invariance is broken.

• Fields are no longer purely (anti)holomorphic functions.

We will especially focus on this last point. All holomorphic fields � in the CFT are by

definition conserved along the antiholomorphic coordinate (and the other way around), i.e.

@z̄� = 0 (3.6)

However, when the perturbation destroys this holomorphicity, we should allow for a nonzero

r.h.s. of equation (3.6).

To study this in detail, let’s look at the space ⇤ of holomorphic descendants of the identity.

It is generated by applying the Virasoro generators Ln (n < �1) to 1. They are thus

combinations of the holomorphic stress-energy tensor T (z) and its z-derivatives. In fact,
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⇤ also contains fields which are a total z-derivative, which we don’t want to consider1, so

let’s set them to zero by looking at the quotient space ⇤̂ := ⇤/(L�1

⇤) instead. With the

L
0

operator, we can separate this space into spin-sectors ⇤̂s. Its eigenvalues in di↵erent

subspaces of ⇤̂ provides the following decomposition:

⇤̂ =
M

s

⇤̂s (3.7)

L
0

�s = s�s �s 2 ⇤̂s (3.8)

Each of these spin-subspaces ⇤̂s contains a basis of fields T
(k)
s , k = 1, ..., dim(⇤s). As

a result of the perturbation, these operators will in general satisfy a modified version of

equation (3.6):

@z̄T
(k)
s =

X

n

hnR
(k,n)
s0 (3.9)

With R
(k,n)
s0 some arbitrary spin-s0 operator. Comparing dimensions, we can get those of

R
(k,n)
s0 :

(0, 1) + (s, 0) = n(
15

16
,
15

16
) + [R(k,n)

(s0) ] (3.10)

=) [R(k,n)
(s0) ] = (s� n

15

16
, 1� n

15

16
) (3.11)

=) s0 = s� 1 (3.12)

Where in the last line we used that an operator’s spin is defined as the di↵erence between

it’s holomorphic and antiholomorphic dimensions. Furthermore, we now see that higher

powers of h result in operators with negative dimensions, which don’t appear in a unitary

theory, so we can just take the linear term and write:

@z̄T
(k)
s = hR

(k)
s�1

(3.13)

1Integrating them over our base space manifold gives, by partial integration, just a constant shift by
their value on our manifold boundary.
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with

[R(k)
s�1

] = (s� 15

16
,
1

16
) (3.14)

Integrability Knowing its conformal dimensions, we have a lot of information about these

fields R(k)
s�1

. To identify them further, we have to compare its dimensions to fields we know.

Zamolodchikov noticed that, if we decompose the space ⌦ of �-descendants in a similar

way as we did with the 1-descendants, we get the following construction:

⌦ =
M

s

⌦s (3.15)

L
0

!s = (
1

16
+ s)!s !s 2 ⌦s (3.16)

L
0

!s = (
1

16
)!s (3.17)

From equations (3.16) and (3.17), we can see that the dimensions of R(k)
s�1

exactly coincide

with those of the fields in ⌦s�1

. Since these dimensions fully determine the field, we can

conclude R
(k)
s�1

2 ⌦s�1

. We can therefore look at equation 3.13 as defining a map:

(@z̄)s : ⇤̂s ! ⌦s�1

(3.18)

This is where Zamolodchikov made a clever observation. Say we can find that for certain

values of s, the r.h.s. of (3.13) is actually a total holomorphic derivative of a spin s � 2

field, then we get the identity (leaving the index k implicit):

@z̄Ts+1

= @z⇥s�1

(3.19)
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Which is a complex continuity equation from which we can construct integrals of motion

Ps [37]:

Ps =

Z
(Ts+1

dz +⇥s�1

dz̄) (3.20)

Demanding the r.h.s. of (3.13) to be of this shape might sound like a tall order, but if we

define the following quotient space:

⌦̂s = ⌦s/(L�1

⌦s) (3.21)

Then the fields we are interested in, the total z-derivatives, are set to zero. This might

seem counterproductive, but consider the following projection operator: ⇧s : ⌦s ! ⌦̂s. It

induces a map between the quotient spaces:

Bs = ⇧s�1

(@z̄)s : ⇤̂s ! ⌦̂s�1

(3.22)

The operator Bs+1

has an interesting property. Whenever it sends a field Ts+1

to zero, we

get the following:

Bs+1

Ts+1

= 0 (3.23)

=) ⇧s(@z̄Ts+1

) = 0 (3.24)

=) @z̄Ts+1

2 L�1

⌦s (3.25)

But this space L�1

⌦s is precisely made up of fields @z⇥s�1

. We therefore find that fields

of spin s + 1 that are in the kernel of Bs+1

obey an complex continuity equation and we

get integrals of motion whenever our Bs+1

has nontrivial kernel. Given the rank-nullity

theorem for a general linear map between vector spaces T : V ! W :

dim(im(T)) + dim(ker(T)) = dim(V) (3.26)
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We see that the dimension of the kernel of Bs+1

obeys

dim(⌦̂s) + dim(ker(Bs+1

)) = dim(⇤̂s+1

) (3.27)

So that we get nontrivial integrals of motion whenever the dimension of ⇤̂s+1

exceeds that

of ⌦̂s.

Reference [17] provides a way of calculating the dimensionality of these Virasoro represen-

tations. We copy here Zamolodchikov’s table for the results:

s 1 3 5 7 9 11 13 15 17 19 21

dim(⇤̂s+1

) 1 1 1 2 2 3 4 5 7 9 11

dim(⌦̂s) 0 1 1 1 2 2 3 5 6 8 12

From which we can simply read o↵ that we have nontrivial IOM for s = 1, 7, 11, 13, 17, 19.

This is a curious list of numbers, with no obvious pattern. A quick query to the On-Line

Encyclopedia of Integer Sequences (OEIS) [29] yields the following sequences that start

with these numbers in this order:

• A007775: Numbers not divisible by 2, 3 or 5.

• A005776: Exponents associated to the Weyl group W(E
8

).

• A154723: The triangle read by rows in which row n lists all the pairs of noncomposite

numbers that are equidistant from n, or only n if there are no such pairs.

• A135776 (A135777): Numbers having number of divisors equal to number of digits

in base 6 (7).

Where (A......) refers to the index of the sequence in the OEIS. While none of these

sequences were published in the OEIS at the time of his paper, Zamolodchikov still con-

jectured the list of IOM to continue indefinitely, making the field theory integrable [37].

This word integrable is notoriously vague. It captures the way in which the theory is

solvable by certain techniques. In classical mechanics, it is defined as a property of the

Hamiltonian dynamics, for particle physicists it is a property of the scattering matrix, and
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in condensed matter and more abstract mathematics it is related to solutions of the Yang-

Baxter equation. Zamolodchikov takes it to mean the presence of an infinite number of

integrals of motion. In all of these situations, the crux is that everything one might want to

know about the theory is constrained by symmetries and conserved quantities alone. Sur-

prisingly perhaps, theories for which this happens can be highly nontrivial and physically

relevant. Zamolodchikov, hoping to be confirmed in his suspicion that this magnetic Ising

model was integrable, went on to investigate the scattering processes in this perturbed

system.

3.2 S-matrix theory

In theories of interactions, one of the most fundamental objects is the scattering(S)-matrix.

We often want to look at which processes are allowed to happen, regardless of anything

else going on, and the S-matrix captures these elementary processes by defining in- and

out-states. Given a configuration of a set of particles at t = �1, the S-matrix maps this

to a set of outgoing particles at t = +1 (or it equivalently might map an out-state to an

in-state). Denoting a particle of type An with rapidity (= log(momentum)) ✓ by An(✓),

we will define the S-matrix by:

|A
1

(✓
1

)...AN(✓N)i =
X

{Bi,✓0i}
SB1...BM
A1...AN

|B
1

(✓0
1

)...BM(✓0M)i (3.28)

In a previous section, we have found that the model we are interested in has a large,

possibly infinite, amount of conserved quantities Ps. Let’s in particular look at operators

of the form e�iPs and what their action on in- and out-states does to a matrix element of

S:

hout| eiPsSe�iPs |ini (3.29)

Now since Ps is conserved, it commutes with S and we get simply

= hout|S |ini (3.30)
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= =

Figure 3.1: The e↵ect of applying the translation operator to in- and out-states of a 3 ! 3
scattering process.

So applying the operator to our in- and out-states has no e↵ect on the total amplitude

of the scattering process. Now take one of the most commonly conserved quantities, mo-

mentum, the generator of translations, and look what this statement means for a 3 ! 3

scattering process. The fact that eiP can freely translate the particles in space without

changing the amplitude ensures that all processes in figure 3.1 should be considered equiv-

alent. Most importantly, we see that we can write a 3-particle scattering as the product of

three 2-particle scatterings.

This argument can be made much more rigorous, but all we need to do is convince ourselves

that these conserved quantities result in an S-matrix that can be fully factorised in terms

of separate 2-particle S-matrices. In fact, for any S-matrix in 1+1 dimensions that has this

property of being 2-particle factorisable, we have the following [10]:

• Scattering processes allow no particles production.

• The set of momenta in the in-state is the same as the set of momenta in the out-state.

Now when we say that no particles are created, that is only true under the analytic S-

matrix mapping from in- to out-states. It can happen that the S-matrix has poles. In

the language of quantum field theory, the S-matrix can be seen as the propagator of a

set of particles, so that its poles actually correspond to the propagator of a bound state

of multiple particles, which, although it doesn’t appear as an out-state, can survive for

macroscopic times. It is therefore the structure of the poles of the S-matrix that carries

the hidden information about the composite particles that the theory can contain. The

key idea of the bootstrap procedure is to see if you can find any poles that correspond to

bound states, then demand that this bound state’s dynamics respect the conserved quan-

tities, and see if there are new poles appearing as a result of this demand. One can repeat
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this process until it consistently closes, and thus arrive at the full bound spectrum.

We start with the assumption that there are conserved charges like the one in equation

(3.29), and that their eigenvalues are additive when the operator works on a multi-particle

state:

Ps |Aa(✓)i = q(s)a es✓ |Aa(✓)i (3.31)

Ps |Aa(✓a)Ab(✓b)...i = (q(s)a es✓a + q
(s)
b es✓b + ...) |Aa(✓a)Ab(✓bi (3.32)

When our 2-particle S-matrix has a pole, i.e. a bound state of type c, at fusion angle ✓a �
✓b = iU c

ab, we can find constraints on the spin of possible conserved charges by demanding

that the expectation value of the conserved charge are the same before and after the

formation of the bound state. In the frame where the created bound state of type c is at

rest, we get the demand:

q(s)c = q(s)a e�is(⇡�Ub
ac) + q

(s)
b eis(⇡�Ua

bc) (3.33)

Zamolodchikov assumed that the e↵ective Lagrangian of the Z
2

-perturbed system would

contain a particle a that would interact with a Z
2

-breaking �3-like interaction, so that

there would be a version of (3.33) with all fusion angles the same. Since they have to add

up to 2⇡, we have Ua
aa =

2⇡
3

, leading to the constraint

2 cos(
s⇡

3
) = 1 (3.34)

which is solved by any s that has no common divisor with 6. The first of these solutions are

s = 1, 5, 7, 11, 13, 17. These have some overlap with the spin values for conserved charged

we found in the previous section, but we found a bit too many here, so let’s tighten the

constraints by adding another particle of type b. Furthermore, we assume that aa ! b

and bb ! a are both possible. Defining x
1

= eiU
2
11 and x

2

= eiU
1
22 , we get the following two

constraints:

27



CHAPTER 3. ZAMOLODCHIKOV’S CONJECTURE

xs
1

+ x�s
1

=
q
(s)
2

q
(s)
1

(3.35)

xs
2

+ x�s
2

=
q
(s)
1

q
(s)
2

(3.36)

Which we can combine into:

(xs
1

+ x�s
1

)(xs
2

+ x�s
2

) = 1 (3.37)

Now in fact, this last equation is so restricting that it will generally be overdetermined

if there are more than two conserved charges. Nevertheless, Zamolodchikov found that it

does admit a consistent solution provided that s has no common divisor with 5, and

x
1

= e⇡i/5 (3.38)

x
2

= e2⇡i/5 (3.39)

If we now look at the first conserved charge, i.e. s = 1, momentum, we see that its

eigenvalue on a state |Aa(✓)i is q1ae✓. Since ✓ is a rapidity, this invites us to interpret q1a as

its mass ma, leading to an expression for the mass ration of the two bound states:

mb

ma

=
q1b
q1a

= x
1

+ x�1

1

= 2 cos(
⇡

5
)

= � (3.40)

Where � is the golden ratio 1.6180339...

If we now combine these results, we find that we have conserved charges for any s having

no common divisor with 5 or 6, i.e. no common divisor with 30. These values of s now

perfectly match those we found in the previous section based on the dimension counting.

In this case however, it is much more clear that this pattern indeed continues ad infinitum.

Note that we have not yet deduced the existence of these particles, we have simply assumed

their existence and then confirmed that it was consistent with the conserved charges we
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found earlier. To deduce the existence of further particles, we need to look for poles in the

S-matrix. Let’s start in the lightest sector with Saa. It needs to have poles at the fusion

angles of a third a-particle (✓ = 2i⇡/3) and a b-particle (✓ = 2i⇡/5). It would thus be nice

to construct our S-matrix from building blocks that independently can insert poles. Dorey

[10] introduces the following building block to achieve just this, with the nice property that

it already obeys unitarity:

(x)(✓) =
sh(✓/2 + i⇡x/60)

sh(✓/2� i⇡x/60)
(3.41)

This has simple poles at ✓ = i⇡x/30, and when we include both (x)(✓) and (30 � x)(✓),

the product immediately satisfies crossing symmetry. Our first guess for S
11

will thus be:

S
11

= (10)(12)(18)(20) (3.42)

(3.43)

Where we dropped the dependence on ✓. However, can now write down the bootstrap

equation for the 11 ! 11 S-matrix2:

S
11

(✓) = S
11

(✓ � i⇡/3)S
11

(✓ + i⇡/3) (3.44)

And we see that our S
11

only satisfies this when we add the blocks �(2)(28), adding two

poles that correspond to a third particle of mass mc = 2ma cos(⇡/30).

We could now continue bootstrapping our way through all the possible scatterings, each

time adding blocks to have our S-matrix be consistent, and adding particles accordingly.

We would find that the bootstrap closes and leaves us with an S-matrix with the following

properties:

• 8 distinct particles

2This is fully analogous to the Yang-Baxter equation we discussed before: In an integrable model, a
particle a interacting with b should be considered equivalent to a particle a interacting with particles c
and d who together form b.
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• 8 di↵erent mass ratios, each a component from the largest eigenvalue of the Cartan

Matrix of E
8

.

• Conserved charges for all s with no common divisor with 30, leading to the pattern

that s mod 30 is an exponent of the E
8

Lie algebra.

• Higher spin charges that form the other eigenvectors of the E
8

Cartan matrix.
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4
A�ne Lie Algebraic Descriptions

In the previous chapters, we’ve seen mysterious numbers appearing in descriptions of a

perturbation of the Ising model. More explicitly, we found that under some natural as-

sumptions, the S-matrix bootstrap procedure closes after revealing the existence of eight

particles whose masses (and higher spin charges) are related to each other by the Cartan

eigenvectors of the Lie algebra E
8

. Let’s briefly revisit some of the concepts we will need

in our description of Lie algebras to try and get a bit closer to what this means.

4.1 Lie algebras

This section is in no way a self contained introduction into the theory of Lie algebras,

but simply serves as a reminder to the already familiar reader, and as a place to establish

notation.

A Lie algebra g is a vector space endowed with a binary, bilinear, antisymmetric operation

called the Lie bracket:

[ , ] : g⇥ g ! g (4.1)

That satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (4.2)
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A specific Lie algebra can be specified by the Lie bracket of a subset of its elements that

forms a basis for the full vector space, called generators:

[Ja, J b] =
X

c

ifab
c J c (4.3)

Where the fab
c are called the structure constants.

It could of course happen that there is a subset of generators {La} for which we have

[La, J b] 2 {La}. We will call this set the ideal. A proper ideal is then a proper subset

for which this holds. We will here be concerned with situations in which there is no such

proper ideal (i.e. the only ideals of this algebra are the empty set and the full set), and

we will call these Lie algebras simple (and will use the term semisimple for a direct sum

of simple algebras).

Since we can capture our entire algebra g in terms of the commutator1 of its generators,

it would be nice to choose our basis of generators in a way that minimises these relations.

This basis is called the Cartan-Weyl basis, and is constructed as follows. We take the

maximal set h of commuting generators:

[H i, Hj] = 0 8 H i, Hj 2 h (4.4)

If this maximal set has r elements, we say that rank(g) = r. The rest of our algebra is now

specified by the commutators of the Cartan subalgebra and the other generators, and the

other generators amongst each other. To complete our Cartan-Weyl basis, we define our

other generators E↵ (which we will refer to as ladder operators) so that they satisfy the

following equation:

[H i, E↵] = ↵iE
↵ (4.5)

We call the vector ↵ a root of g, and it defines a map ↵(H i)(= ↵i) : h ! C, so belongs

to the vector space dual to h. Another way to look at the roots is by defining the adjoint

1I will often refer to the Lie bracket as a commutator since this is the one most familiar in physics
where we usually only work with representations of algebras, and since it necessarily satisfies the Jacobi
identity.
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action of a generator:

ad(H i) · Ja := [H i, Ja] (4.6)

The roots are now simply the adjoint action of the Cartan subalgebra on the ladder oper-

ators.

Lastly, we need to find the commutator of the ladder operators amongst each other. The

Jacobi identity implies:

[H i, [E↵, E�]] = (↵i + �i)[E↵, E�] (4.7)

so we see that if ↵ + � was one of our roots, then according to (4.5), [E↵, E�] has to be

proportional to E↵+�. If ↵+� = 0, then apparently [E↵, E�] is proportional to some linear

combination of elements of h. Equation (4.5) actually only defines our ladder operators up

to normalisation, so we can just pick this linear combination and decide [E↵, E�] = 2

↵·↵↵·H,

where we define · as the usual scalar product2 ↵ · � =
P

i ↵
i�i. lastly, if ↵+ � is neither a

root nor zero, then [E↵, E�] must be zero itself. Summarising:

[H i, Hj] = 0 (4.8)

[H i, E↵] = ↵iE
↵ (4.9)

[E↵, E�] / E↵+� if ↵ + � a root (4.10)

=
2

↵ · ↵↵ ·H if ↵ = �� (4.11)

= 0 otherwise (4.12)

Let’s now investigate those roots a bit further and look at the space they live in: h⇤, dual

to h. While h⇤ has the same dimension as h, namely rank(g) = r, the number of roots that

we have is equal to the number of ladder operators, which is actually the dimension of our

full algebra g minus the dimension of h. As soon as the dimension of our algebra is more

than twice its rank, we will find roots that are linear combinations of each other. In our

perpetual search for simplicity, we would of course like to be left with just r roots and the

2This scalar product on the root space is actually induced by the Killing form on g.
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recipe for how to make linear combinations of them.

If we want to do any of this, we should first write our roots explicitly in a basis of h⇤:

↵ =
X

i

ni�i (4.13)

In order to choose which roots we will use to express the others, we will have to use a quite

arbitrary construction. Define a positive root as a root for which the first nonzero element

of its n-vector is positive. This is a rather arbitrary definition, since it fully depends on

both the basis we choose, and the ordering of this basis. Nevertheless, it gets the trick

done since it allows us to define a simple root as a root that can not be written as the sum

of two positive roots, and in the end, our most important results will again be independent

of this choice of basis. Since these simple roots span h⇤, there must be r of them, and we

can define the following r ⇥ r matrix:

Aij =
2↵i · ↵j

↵j · ↵j

(4.14)

Which we will call the Cartan matrix of our algebra g. Remarkably, this matrix is com-

pletely independent of our choice of basis for h⇤, and uniquely specifies a Lie algebra.

Lastly, before we move on to bigger things, let’s define the so-called weights to give some

context to this construction.

We have defined our roots as a kind of eigenvalues of the operator ad(H i). However, What

we have implicitly done is choose the vector space on which the elements of the algebra act

to be the algebra itself. This adjoint representation gives us a very explicit expression for

the action of the algebra, and allowed us to lift this action to the dual space so that the

scalar product on h⇤ could be defined. However, this is in no way necessary, and we might

just as well look at eigenvalues of the Cartan subalgebra in di↵erent representations:

⇢(H i) |�i = �i |�i (4.15)
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Where ⇢(H i) is some representation of h and {|�i} a basis that diagonalises the represen-

tation ⇢. The full r-vector � induces the dual map:

�(H i)(= �i) : h ! C (4.16)

We will call these � weights, and they obviously also live in h⇤. In fact, if we choose ⇢ to

be the adjoint representation, we get our usual roots back. Roots are thus the weights of

the adjoint representation.

We now have the necessary terminology to tackle what we are really here for: a�ne

extensions of these algebras, and their role in quantum field theories.

4.2 A�ne extensions

Let g be a semisimple Lie algebra. We can then define the tensor product

g̃ := g⌦ C1(S1) (4.17)

of the Lie algebra g and the algebra of C1 functions on the circle with the bracket

[g ⌦ µ, h⌦ ⌫] = [g, h]⌦ µ ⌫ µ, ⌫ 2 C1(S1), and g, h 2 g (4.18)

Now, note that these functions are periodic and can be expanded in a Fourier series:

µ(✓) =
X

n

µne
i✓n (4.19)

Under the redefinition t = ei✓, it is now obvious that g̃ can also be written as

g̃ = g⌦ C[t, t�1] (4.20)

Where C[t, t�1] is the algebra of Laurent polynomials in one variable. Here, ⌦ is a tensor

product in the sense that a vector space A⌦B is spanned by elements a⌦b with a 2 A, b 2
B. Which means that g̃ is spanned by elements

⇣
g 2 g

⌘
⌦
⇣
µ 2 C1(S1) : S1 ! C

⌘
, i.e.
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(smooth) maps from S1 to g. Maps from the circle to some other space are called ‘loops’ ,

so the algebra g̃ is called the loop algebra.

Looking at the algebra of the new generators Ja
n := Ja ⌦ tn, we can add a central fully

commuting element k̂ to their algebra:

[Ja
n, J

b
m] =

X

c

ifab
c J c

n+m + k̂n�a,b�n+m,0 , with [Ja
n, k̂] = 0 (4.21)

Let’s now look for the new Cartan subalgebra. The most obvious choice is just taking the

Cartan subalgebra of g tensored with the t0 modes, {H1

0

, ..., Hr
0

}, and adding k̂ to it, since

these obviously all commute.

However, let’s look at what this does to the roots of the algebra, defined by the adjoint

action of the Cartan subalgebra on the rest of the algebra:

ad(H i
0

)E↵
n = [H i

0

, E↵
n ] = ↵iE

↵
n (4.22)

ad(k̂)E↵
n = [k̂, E↵

n ] = 0 (4.23)

(4.24)

This leads to the root (↵1, ...,↵r, 0), which is infinitely degenerate (i.e. independent of

n). We clearly need a kind of n-grading, which is e�ciently implemented by the operator

L
0

:= �t d
dt
:

ad(L
0

)Ea
n = �nEa

n (4.25)

We thus have a grading that lifts the degeneracy of the roots, while still commuting with

all the elements of h̃ and k̂. It thus leads us to a new algebra ĝ = g̃� Ck̂ � CL
0

, of which

we can define a Cartan subalgebra as

ĥ = {H1

0

, ..., Hr
0

, k̂, L
0

} (4.26)
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Leaving us with the rest of the (now infinite dimensional) algebra as ladder operators:

E↵
n 8n and H i

n for n 6= 0 (4.27)

We call ĝ an a�ne Lie algebra.

Having now defined our full Cartan subalgebra, we can find a basis for our root space and

define a Cartan matrix. A general a�ne root can be denoted by ↵̂ = (↵, k↵, n↵), where

the entries are the eigenvalues of a ladder operator w.r.t. (respectively) H i
0

, k̂, and L
0

.

Since k̂ is emphatically chosen such that it commutes with every element of the algebra

(i.e. adjoint action is zero), the root component k↵ is always zero and we need only r+1

basis vectors to span the hyperplane on which the roots live. The root associated to H i
n is

thus (0, 0, n) := n�, such that the root associated to E↵
n is (↵, 0, n) := ↵ + n� (n > 0). We

now need to find the r+1 simple roots of this a�ne Lie algebra, r of which are simply the

simple roots of our original Lie algebra, and it can be shown[8] that a su�cient addition

to our basis of simple roots is ↵
0

= �✓ + �, where ✓ is the so-called highest root, i.e. the

root of g that has the largest sum of components once it is written in the basis of our root

space. Our full set of simple roots is now {↵i}, i = 0, ..., r, and Cartan matrix can stay

defined in the usual way.

4.3 WZW models and the coset construction

Now that we’ve established an understanding of Lie algebras, let’s see how these con-

structions appear in field theories. Consider the following nonlinear � model. It is a field

theory with a Lie group valued target space (describing objects propagating over the group

manifold), and has an explicit formulation in terms of an action:

S� =
1

4a2

Z
d2x Tr’(@µg�1@µg) (4.28)

Where a is some dimensionless coupling constant, g is a group valued field, and Tr’ is a

trace that is made representation independent by normalisation. It is not exactly what we

are looking for though. First of all, it turns out that while classically conformally invariant,
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it actually loses this symmetry at the quantum level so it can’t be a candidate for our Ising

CFT. There is however a modification of the action that restores conformal invariance, and

results in an interesting current algebra. The explicit derivation of this action is beyond

the scope of this thesis, so we will just print the result from [8] here:

SWZW =
k

16⇡

Z
d2x Tr0(@µg�1@µg) + k� (4.29)

Where the first term is the standard nonlinear � model term (with a rescaled coupling

constant, now called k), and � is the so-called Wess-Zumino term:

� =
�i

24⇡

Z

B

d3y ✏↵��Tr
0(g̃�1@↵g̃g̃�1@� g̃g̃�1@� g̃) (4.30)

Where the integral goes over a manifold whose boundary is the compactification of our

original base manifold, and the tildes indicate that the field has been extended over this

new integration manifold (the question of uniqueness for this extension is interesting, but

not relevant to our current discussion). That is, when our original base space was the

complex plane, the boundary of B will be the Riemann sphere, so B is just a 3-ball. This

new action comes with the conserved currents

J(z) = �k@zgg
�1 (4.31)

J̄(z̄) = kg�1@z̄g (4.32)

Since these are still independently conserved, let’s focus our attention on only the holo-

morphic part, and expand it in the algebra generators ta:

J(z) =
X

a

Jata (4.33)

Leading to the following operator product expansion (OPE) [8]:

38



CHAPTER 4. AFFINE LIE ALGEBRAIC DESCRIPTIONS

Ja(z)J b(w) ⇠ k�ab
(z � w)2

+
X

c

ifabc
J c(w)

(z � w)
(4.34)

Where fabc are the structure constants of our algebra, and⇠means equal up to non-singular

terms.

Defining the current Laurent modes

Ja(z) =
X

n2Z
z�n�1Ja

n (4.35)

And inverting this to

Ja
n =

1

2⇡i

I
dz znJa(z) (4.36)

We can now look at the commutator of two of current modes by the usual relation between

the commutator and complex contour integrals:

[Ja
n, J

b
m] =

1

(2⇡i)2

 I
dw wm

I
dz zn �

I
dz zn

I
dw wm

!
R
�
Ja(z)J b(w)

�
(4.37)

Where we can replace the radially ordered product R
�
Ja(z)J b(w)

�
by the OPE (4.34).

Fixing w temporarily, and noting that the di↵erence between the z integrals amounts

exactly to one z integral around the point z = w, we can write this as:

=
1

(2⇡i)2

I

w⇡0

dw wm

I

z⇡w

dz zn

 
k�ab

(z � w)2
+
X

c

ifabc
J c(w)

(z � w)

!
(4.38)
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Expanding z around the point w as z =
�
wn + (z � w)wn�1n+ higher terms

�
, we get

=
1

2⇡i

I

w⇡0

dw

✓
nwn+m�1k�ab +

X

c

ifabcJ cwn+m

◆
(4.39)

= nk�ab�m+n,0 +
X

c

ifabcJ c
n+m (4.40)

(4.41)

Where we recognise exactly our original a�ne Lie algebra bracket with central element k.

The Sugawara Construction Up until now, while it’s neat that our currents obey the

a�ne extension of the algebra associated to our group manifold, it is not very clear why

these WZW-models should be of any significance in our discussion, or even in the discussion

of conformal field theory in general. The point that illustrates this is the following definition

of the energy momentum tensor, referred to as the Sugawara construction.

T (z) =
1

2(k + g)

X

a

: JaJa : (z) (4.42)

Where the dots impose normal/radial ordering, and g is the dual Coxeter number of the

finite Lie algebra associated to the group manifold. Recalling that the energy momentum

tensor has an OPE with itself of the form:

T (z)T (w) ⇠ c/2

(z � w)2
+

2T (w)

(z � w)2
+

@T (w)

(z � w)
(4.43)

One finds[8]

c =
k dim(g)

k + g
(4.44)

To see the Virasoro algebra that is indicative of a CFT, we expand T (z) in modes:
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T (z) =
X

n

z�n�2Ln (4.45)

After which one can show that they obey the Virasoro algebra:

[Ln, Lm] = (n�m)Ln+m +
c

12
n(n2 � 1)�n+m,0 (4.46)

Thus in a sense, what the Sugawara construction provided us with, was an embedding

of the Virasoro algebra in the original a�ne Lie algebra. Remarkably, the embedding is

such, that the modules of highest weight representations of the a�ne Lie algebra overlap

with modules of highest weight Virasoro representations (descending weights in the Vira-

soro representation match with descendants of primary fields in our WZW CFT). Still,

the CFTs that can be described by these WZW-models all have a central charge bigger

than 1 (in fact, dim(E
8

) = 248, so an a�ne E
8

WZW model at level k = 1 would have

c = 248/31 = 8). These are not the theories we are interested in, and we need another

construction to take us home.

Cosets Let now ĝ be an a�ne Lie algebra at level k, and f a subalgebra of ĝ at level k’. We

can construct an energy momentum tensor and associated modes for both of these through

the Sugawara construction, resulting in Lˆg
n and Lf

n. If we now define

Lˆg/f
n := Lˆg

n � Lf
n

We can look at the commutator

[Lˆg/f
n , Lˆg/f

m ] = [Lˆg
n, L

ˆg
m]� [Lf

n, L
f
m] (4.47)

= (n�m)L
ˆg/f
n+m +

�
c(ĝk)� c(fk0)

�
n
n2 � 1

12
�n+m,0 (4.48)

From which we see that L
ˆg/f
n still obeys the Virasoro algebra, but with a di↵erent central

charge, namely the di↵erence between the central charges that the individual Virasoro
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algebras would get:

c(ĝ/f) =
k dim ĝ

k + g
� k0 dim f

k0 + g0
(4.49)

Where g0 is the dual Coxeter number of f.

These L
ˆg/f
n are therefore the modes of another Sugawara energy momentum tensor T ˆg/f :=

T ˆg � T f.

Now if we recognise that the currents Ja
f , are weight 1 primaries w.r.t. both T f and T ˆg,

then we can say:

T fJa
f ⇠ T ˆgJa

f (4.50)

Such that

T ˆg/fJa
f =

✓
T ˆg � T f

◆
Ja
f ⇠ 0 (4.51)

And since T f is fully defined through the currents Ja
f , we can also conclude

T ˆg/fT f ⇠ T ˆg/fJa
f ⇠ 0 (4.52)

The original T ˆg can therefore be decomposed in two orthogonal (in the sense that their

OPE vanishes) pieces:

T ˆg = T ˆg/f + T f (4.53)

With

[T ˆg/f, T f] = 0 (4.54)

An especially interesting and simple case, is that of the diagonal cosets which we will write

as:
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g/f =
ĝk � ĝl
ĝk+l

(4.55)

Taking now ĝ = ŝu(2), the a�ne extension of the su(2) algebra, and l = 1:

g/f =
ŝu(2)k � ŝu(2)

1

ŝu(2)k+1

(4.56)

We get a family of CFTs with central charges

cg/f = 1� 6

(k + 2)(k + 3)
(4.57)

Which is exactly the series of central charges of minimal unitary models.

This leads us to a surprising conclusion: Every system that is described by a minimal uni-

tary model has a description in terms of a field theory associated to a diagonal embedding

of an a�ne Lie algebra.

Operator Content However, it would be nice if we could follow this description a bit

further than just the central charge, and also find the correspondences between represen-

tations of the coset and the fields in the CFT (since as mentioned, the highest weight

modules overlap). We first need to identify the representations of the coset. For this, we

use again that the algebra splits into orthogonal components, and that we can decompose

the representations according to (see [8] for more details)

� =
M

µ

b�µµ (4.58)

Where � is a representation of g and µ of f (embedded in g).

These branching functions b�µ are then the natural candidates for the coset representation.

There are subtleties with identifying fields and representations, since in practice this iden-

tification is done by comparing characters, but these cases are beyond the scope of this

thesis, and I refer the interested reader to [8] and [18]. The key point to take away from

this is not the technicalities in calculating the characters of representations, but rather
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that we can make this identification between states in the Virasoro reps and the a�ne Lie

algebra reps at all. It allows us to actually look at which primary fields the coset model

contains, and thus which exact model it describes. There are di↵erent cosets that all lead

to the same central charge. The c = 1

2

Ising CFT can for example be reached by taking

k=1 in a diagonal ŝu(2)k coset:

ŝu(2)
1

� ŝu(2)
1

ŝu(2)
2

(4.59)

But also, more relevant to our discussion, by a diagonal E
8

coset at level 1:

(Ê
8

)
1

� (Ê
8

)
1

(Ê
8

)
2

(4.60)

Summary The critical Ising model that we have been studying thus has a description in

terms of a CFT with an a�ne Lie algebra as its current algebra. And remarkably, we can

take as this algebra either the ‘most basic’ one, A
1

(= su(2)) or the ‘most exceptional’ one,

E
8

. We have thus found a point of contact between the Ising model and the algebra E
8

.

4.4 Toda field theory

There is a second natural relation between CFTs, their deformations, and (a�ne) Lie

algebra’s, namely in so-called Toda field theories. Starting from the classical Toda field

equations which describe n scalar fields �̃i self-interacting [19]:

@µ@
µ�̃i +

m2

�

nX

j=1

Aije
� ˜�j = 0 (4.61)

We can introduce new variables and make it describe fields taking values in the root-space

of the Lie algebra g of which Aij is the Cartan matrix:

�̃i = h↵i,�i+
1

�
log

2ni

h↵i,↵ii
(4.62)
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Where h , i is the scalar product in the root space induced by the Killing form on g, and

ni is the ith Kac (or Coxeter) label, i.e. the projection of the highest root ✓ on the ith

basis vector of the root space. Our field equations are now the Euler-Lagrange equations

of the following action:

S
TFT

=

Z
d2x

 
1

2
h@µ�, @µ�i �

m2

�2

rX

i=1

nie
�h↵i,�i

!
(4.63)

Where the sum now goes up to rank(g) = r. It can be shown that these theories are actually

conformally invariant, i.e. the sum of all marginal couplings stays exactly marginal. While

interesting in their own right, what made people interested in Toda field theories is the fact

that there is a very natural way to perturb them away from conformal invariance. This

perturbation just needs to be an extra term in the potential that makes the total coupling

marginally (ir)relevant, but the most interesting case would of course be an integrable3

perturbation. It turns out that when adding a perturbation by adding a field �r+1

, and

thus necessarily also a root ↵r+1

, we get an integrable non-conformal theory as long as we

take the new roots to be those of the a�ne extension of g, and nr+1

= 1 [19]. We now

write our potential as an explicit series in the fields �i:

V (�) =
m2

�2

r+1X

i=1

nie
�h↵i,�i (4.64)

=
m2

�2

r+1X

i=1

ni

⇣
1 + �h↵i,�i+

1

2
�2h↵i,�ih↵i,�i+ ...

⌘
(4.65)

Now we are mainly interested in the term that is quadratic in our fields, since it is this

term that will actually form our mass-squared matrix:

(M2)ij = m2

r+1X

k=1

nk(↵k)i(↵k)j (4.66)

The eigenvalues of this operator will form the mass spectrum of our Toda theory. Up to

a total normalisation, this matrix is fully specified given a Lie algebra g. In fact, for g a

3Integrable in the sense that the S-matrix factorises.
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simply laced Lie algebra, it can be shown that the eigenvalues of this operator M2 will

always be the components of the Perron-Frobenius eigenvector of the Cartan matrix of g

[13]. For E
8

we again get:

m
1

= M m
2

= 2M cos(
⇡

5
)

m
3

= 2M cos(
⇡

30
) m

4

= 2m
2

cos(
7⇡

30
)

m
5

= 2m
2

cos(
2⇡

15
) m

6

= 2m
2

cos(
⇡

30
)

m
7

= 4m
2

cos(
⇡

5
) cos(

7⇡

30
) m

8

= 4m
2

cos(
⇡

5
) cos(

2⇡

15
)

The exact mass spectrum Zamolodchikov found through his S-matrix bootstrap procedure.

4.5 Hidden geometry

We will now show a striking, remarkably visual, correspondence between the scattering

theory that Zamolodchikov proposed and geometry in the root space of E
8

. This space

is the 8-dimensional vector space in which the 240 roots of E
8

live. A 2D projection is

shown on the front page of this thesis. All of these roots have a squared length of 2, and

with each root ↵ we can associate a reflection r↵ in a 7D hyperplane orthogonal to ↵ itself.

Denoting the full set of roots by �, we can look at the set {r↵},↵ 2 �, endowed with the

operation of successive reflection, which is referred to as the Weyl group W . The action of

an element r↵ is defined as

r↵(x) = x� 2
h↵, xi
h↵,↵i , where x 2 span(�) (4.67)

and h , i is the usual scalar product on the root space. Now since we can compose these

reflections to make other reflections in W , and since adding the simple roots together can

generate all of �, we can actually generate all of W by just those r↵ where ↵ is a simple

root. We thus arrive at the following set of generators for W : {r
1

, r
2

, ..., r
8

}. Looking at

the definition of the reflections, we see that the only information we need are mutual inner

products of the simple roots, which are completely contained in both the Cartan matrix

and the Dynkin diagram. So far, this whole construction could be followed for any Cartan
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Figure 4.1: The Dynkin diagram of E
8

. It is a bipartite graph that separates into a black
and a white subgraph, that each contain only nodes (i.e. roots) that share no edge (i.e.
are mutually orthogonal). Source: [10]

matrix, but we will now use a particular property of E
8

, namely that the simple roots can

be separated into two sets that each comprise only roots that are mutually orthogonal, the

black roots and the white roots (see figure 4.1).

Orbits We can write down an element w 2 W in so-called Steinberg ordering, in which

all reflections w.r.t. black roots are to the left of the reflections w.r.t. white roots. Since

reflections in orthogonal planes commute, the only thing that matter is white first vs. black

first, but this just amounts to switching from w to w�1. Following the convention of Dorey

[11], we will write w�1 = r
8

r
5

r
2

r
1

r
7

r
6

r
4

r
3

. Note that since � is finite, orbits of a particular

element of � must close under the repeated action of this element w�1. Using the code

from the appendix A.2, we look at these orbits, and track the coe�cients of the simple

roots over time. The results can be seen in figure 4.3.

Note that for all orbits, the recurrence time is exactly 30, i.e. w30(↵) = ↵ , 8↵ 2 �. In

fact, what can also be seen from the plots, and actually holds in general for E
8

, is that

w15 = �1.
The relevance of this discussion is not immediately clear, but an inspection of the pole

structure of Zamolodchikov’s S-matrix can reveal a pattern.

Pole Structure In our discussion of the S-matrix in the previous chapter, we found a way

to write this matrix as a product of fundamental building blocks (x). In particular, we

found

S
11

= �(2)(10)(12)(18)(20)(28) (4.68)

If we identify the block (0) with a factor 1, and the block (30) with a factor of -1, then we
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can actually simplify this expression by introducing the new block [x] = (x� 1)(x+ 1), so

that we can S
11

as:

S
11

= [1][11][19][29] (4.69)

This seems quite arbitrary, but it actually turns out that we can write all the sectors of S

in this way. Two more examples are [10]:

S
12

= [7][13][17][23] (4.70)

S
13

= [2][10][12][18][20][28] (4.71)

Now these series of numbers don’t really seem to mean a lot at first sight, they certainly

don’t show up in any of the same sequences in the OEIS (Online Encyclopedia of Integer

Sequences). However, there is a hidden pattern here. If we draw a number line, and place

a rectangle on top of the number x, ranging from i(x� 1)⇡/30 to i(x+1)⇡/30, we get the

pattern in figure 4.2. The exact same pattern can be seen in the ↵
1

and ↵
2

coe�cients in

the orbit of ↵
1

under the Coxeter element. This is remarkable: The pole structure in the

scattering theory of Zamolodchikov is actually completely determined by the reflections

of the Weyl group of the simple E
8

roots. In fact, this principle holds more generally: a

particle of type i can form a bound state with one of type j at relative rapidity i(x�1)⇡/30

or i(x + 1)⇡/30, as long as wx(↵i) has a nonzero coe�cient for root ↵j. The whole boot-

strap procedure, a laborious and awkward exercise, is thus equivalent to simply calculating

orbits of simple roots under the Coxeter element.

Reflections on Reflections We have now seen a number of ways in which E
8

plays a

role in the scattering theory of the scaling limit of the Ising model:

• Assuming a Z
2

perturbation, we included a cubic field interaction that allowed for a

conserved bootstrap procedure to predict eight particles with masses related to each

other by an eigenvector of the E
8

Cartan matrix.

• We then constructed a CFT where the fields take values on the group manifold

associated to the Lie algebra of the diagonal coset of the a�ne extension of E
8

, and
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Figure 4.2: The distribution of blocks on the positive number line for the scattering sector
of the first particle with the first three particles. Source: [10]

ended up with a theory with the same central charge and field content as the scaled

critical Ising model.

• Starting from a conformally invariant Toda Field theory, we found that letting the

fields take values in the root space of a�ne E
8

, and having them interact with its

simple roots through the Toda potential leads to the same spectrum of particles as

Zamolodchikov found.

• The full pole structure, and thus the pattern of bound states, that emerges in the S-

matrix of the perturbed Ising model is hidden in the mutual reflections of the simple

roots of E
8

.

While our understanding of the role of E
8

has thus certainly increased since Zamolodchikov

first found his S-matrix, all these leads are still very mysterious and leave a lot unexplained.

Why does the a�ne extension correspond to a perturbation? Was there already an E
8

structure present in the unperturbed Ising model? Do we actually need the full structure

of E
8

as a Lie algebra, or is everything we need the geometry of its eight simple roots? Most

notably, none of these theories can actually tell us what those bound states are made of,

and everything we have seen so far is only true in the scaling limit, while the model we were

originally investigating, the Ising model, is fundamentally only defined on a discrete lattice.

Puzzled but intrigued, hoping for more insight, we now leave continuous space behind us,

and turn our attention to a very di↵erent kind of mathematical physics: discrete lattice

models.
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Figure 4.3: Plots of the orbits of all eight roots under the Coxeter element. on the x-
axis there are the consecutive powers of w, on the y-axis there are the eight roots. Blue
colours are negative coe�cients, orange colours are positive, both normalised to the largest
coe�cient in the orbit.
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Figure 4.3: (Continued)
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5
Back to Lattice Models

Statistical physics is the repeated translation of models into each other, until

one arrives at a model that was solved by Baxter. - Eytan Domany, 2017 [9]

In the previous chapters, we have explored a number of ways in which either the group

E
8

, its associated algebra, or just some properties of those can be linked to the magnetic

perturbation of the Ising Model. In a sense though, Zamolodchikov’s main point has still

been unexplored. His main conjecture in the original paper was that there should be a

solvable lattice model in the universality class of the magnetic Ising model that has these

eight particles as excitations on its lattice. That is indeed the best thing we can hope for,

since we do not have an exact solution to the magnetic Ising model itself. The previous

chapters have certainly made this conjecture more plausible, but have not gotten us closer

to the explicit version of this lattice model, nor explained what those eight particles actu-

ally are. There has been progress on this front, which we will review here in this second

part of the thesis. Central will be the paper [3], by Bazhanov, Nienhuis and Warnaar,

where they find that an integrable o↵-critical deformation of the dilute A
3

model shows

the same E
8

structure in the the solutions of its (thermodynamic) Bethe Ansatz. These

solutions are notoriously ambiguous though, and it is not very clear what these excitations

are in terms of more natural quantum numbers. We know that this dilute A
3

model lies

in the same universality class as the Ising model, which leads us to the conjecture that it

must also have a natural description in terms of the Ising free fermions. On top of that, it

o↵ers an o↵-critical integrable extension that reveals the eight excitations. If we manage

to link these two descriptions, we could thus find a description of the eights particles in
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terms of free fermion momentum occupation numbers. Throughout the rest of this thesis,

this will be our main goal.

As inspiration, we first look at the critical spin-1
2

Ising model, which famously has a

description in terms of its free fermions, but also allows for a translation to the integrable

6-vertex model and thus can be described by its own Bethe Ansatz. The steps needed to

translate the critical Ising model into a Bethe Ansatz are very similar to those needed to

arrive at the Bethe Ansatz of the dilute A
3

model, so we first practice and review these

steps in this simpler case. The main object of study will be the transfer matrix, since

it is the main tool of the algebraic Bethe Ansatz, and all the translations fundamentally

link partition sums, which can be canonically defined by the system’s transfer matrix.

Once we’ve successfully connected the free fermion Ising transfer matrix to the one of the

six-vertex Bethe Ansatz (the top row in figure 5.1), we will, in the next chapter, turn

our attention towards the dilute A
3

model. With the Bethe Ansatz results from [3], we

hope to establish, as we first did for the critical Ising model, a link between the transfer

matrix eigenvalues of the dilute A
3

model in terms of Bethe quantum numbers and those

in terms of the more natural free fermion quantum numbers (corresponding to the path in

the bottom row of figure 5.1).

5.1 Transfer matrix spectrum of a diagonal Ising model

It turns out that in the correspondence between the Ising model on a square lattice and

a 6-vertex model, the original Ising lattice will be rotated by ⇡/2, so to be able to treat

the 6-vertex model on a normal square lattice, we will look at the Ising model on a square

lattice, rotated by ⇡/2 (see figure 5.2).

We impose periodic boundary conditions, and get a bipartite lattice with two di↵erent

transfer matrices D
1

and D
2

, both operators acting on a spin chain � = (µ
1

, µ
2

, ..., µM)1

1We take the lattice to be homogeneous and isotropic to simplify notation. All results generalise to the
situation in which the horizontal and vertical couplings of the unrotated lattice take respective values Jh
and Jv. Simply changing all functions f(2J)2 to be f(2Jh)f(2Jv) gives the inhomogeneous results.
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Free
Fermions

Critical
Ising

q=2
Potts

Dense
Loops

6-Vertex
Alg.
Bethe
Ansatz

c = 1/2
CFT

Free
Fermions

Dilute
A

3

Dilute
Loops

19-Vertex
Alg.
Bethe
Ansatz

E
8

Scat-
tering

Figure 5.1: An overview of the di↵erent models we’ll encounter in the next sections, and
their mutual relations. Most of the words have not been defined yet, so this diagram
mainly serves as a reference to come back to later. The key point is that we are going to
start with the top row, and look at the link between critical Ising free fermions and its
algebraic Bethe Ansatz through dense loops and the 6-vertex model. In a later chapter we
will then cover the bottom row, where we go from the dilute A

3

model to a Bethe Ansatz
that contains the E

8

scattering matrix. The link towards the free fermions in the bottom
row is less exact, but this nuance will also be addressed later.

Figure 5.2: Three rows, �, �0 and �00, on a diagonal lattice. Source: [15]

(D
1

)�,�0 = exp(J
MX

j=1

µjµ
0
j + µj+1

µ0
j) (5.1)

(D
2

)�0,�00 = exp(J
MX

j=1

µ0
jµ

00
j + µ0

jµ
00
j+1

) (5.2)

However, we are interested in diagonalising the full transfer matrix T = D
1

D
2

. It is shown

in the appendix A.3 that both these matrices commute with another operator acting on

the same chain: the 1D quantum Ising Hamiltonian:
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H =
MX

j=1

(�x
j + S�z

j�
z
j+1

)

Which, by identifying �x as the spin-flip Pauli operator, and �z as the diagonal Pauli spin

matrix, we can also write in µ-basis:

Hµµ0 =
MX

j=1

(�µ1,µ0
1
�µ2,µ0

2
...�µj ,�µ0

j
...�µM ,µ0

M
) + Sµjµj+1

�µ,µ0

Since both D
1

and D
2

commute with H, their product also does, and the full transfer

matrix T and H can be simultaneously diagonalised.

In the appendix A.4 we write the Hamiltonian in terms of fermion operators in momentum

space, using the diagonalisation of this operator as done in [35].

The total eigenvalue of the transfer matrix is ⇤ =
Q

0q⇡ �(q), where we have to make

a choice for �(q) for each factor in the product, since for every q 6= 0, ⇡ there are four

options: q and �q are both occupied, either is, or neither are. These are respectively:

�
1,1(q) = 2(cosh2 2J +Rq) (5.3)

�
1,0(q) = �

0,1(�q) = 2 sinh 2J(1� e�iq) (5.4)

�
0,0(q) = 2(cosh2 2J �Rq) (5.5)

Where Rq =
p

1 + S2 + 2S cos q and S = sinh2 2J

These di↵erent choices correspond to di↵erent fermion occupations, so every eigenvalue

can thus be identified with a fermion occupation.

There is a nuance to address. Remember that q ranges in (�⇡, ⇡], and goes in steps

of 2⇡/N . We still should check exactly which values our boundary conditions impose.

Our original boundary conditions in real space were periodic: �i
M+1

= �i
1

. These bound-

ary conditions are more subtle however for fermionic operators, being dependant on the

even/oddness of the number of fermions. Luckily, we can see from the definition of the

Hamiltonian in terms of these operators that fermions can only be created or destroyed

in pairs, so the overall parity of the fermion number is conserved, and the Hilbert space
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decomposes in separate even and odd sectors as H = E � O. Defining P as the projec-

tion operator on the even subspace E , we can write c
(†)
M+1

= c
(†)
1

(1 � 2P), and capture all

boundary conditions.

Looking at the Fourier decomposition,

c
(†)
M+1

=
1p
M k

e(�)ik(M+1)c
(†)
k (5.6)

We demand this to be equal to c
(†)
1

(1� 2P), and can conclude that:

k =
2⇡

M
j (5.7)

with

(5.8)

j 2 (�M

2
,
M

2
] \ Z+

1

2
in the sector E (5.9)

j 2 (�M

2
,
M

2
] \ Z in the sector O (5.10)

We have assumed our total number of lattice sites M here to be even. If M is odd, then

the two sectors switch momentum values.

With this information, we are indeed able to identify a fermion momentum occupation

with each eigenvalue of the transfer matrix. Tables of this for some small system sizes

can be found in the appendix A.5. With this identification in hand, we can continue into

the other direction (in fig. 5.1), and work towards the Bethe Ansatz, starting from a loop

model.

5.2 From spin models to loop- and vertex-models

We start our discussion with the definition of the q-state Potts model on a lattice L. This
is not the model we are necessarily interested in, but a more general model of which our

Ising model is a special case. Since it is not really more complicated to work with, we will

56



CHAPTER 5. BACK TO LATTICE MODELS

keep things as general as possible for a while. Each vertex has a spin � that takes a value

in {1, 2, ..., q}. Any two vertices that are connected by an edge contribute an energy ✏ if

they are in the same spin-state. This leads to the following partition sum:

Zq =
X

spin cfg.

exp
⇣
�✏
X

<i,j>

��i,�j

⌘
(5.11)

Where the sum over < i, j > is over pairs of nearest neighbours (i, j) 2 L.
We now go back to our Ising model, and see that we can indeed write its partition sum in

terms of the partition sum of this Potts model2:

Z
Ising

=
X

cfg.

e
P

<i,j> K�i�j (5.12)

=
X

cfg.

e
P

<i,j> 2K��i,�j�K (5.13)

/
X

cfg.

e
P

<i,j> 2K��i,�j (5.14)

= Zq (5.15)

Where in the last equality we set q=2, and take the Potts coupling to be twice the Ising

coupling.

This Potts sum can be rewritten if we define v := e�✏ � 1:

Zq =
X

spin cfg.

Y

<i,j>

(1 + v��i,�j)

This product consists of E binomial factors, where E is the number of edges in L. If we

were to fully write out this product, we would end up with 2E terms, each corresponding

to a unique list of E choices between the first term (1), or the second term (v��i,�j) in the

factors. If we now take the vertices of L, and only draw an edge between (i, j) if we took

the (v��i,�j) in the expansion of the product, we can associate a graph G on L to each term

in the expansion of the product (see figure 5.3).

If this graph contains l edges, the associated term in the expansion of the product has a

2One can understand this intuitively by recognising that the Ising model is basically a model of two dif-
ferent nearest neighbour configurations, with two di↵erent energies. The Potts model then just generalises
this to q di↵erent configurations with two di↵erent energies.
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Figure 5.3: An example of clusters on the square lattice. This graph has 20 edges and
6(+20) connected components, so will contribute a factor of q6+20v20 to the partition sum.

weight vl.

This representation of the Potts partition function is called the Fortuin-Kasteleyn cluster

representation (introduced in [12]), where cluster refers to a connected component of the

graph. What is left is the summation over all spin configurations. The delta functions,

however, restrict clusters to have all vertices in the same spin-state, so summing over all

possibilities amounts to an overall multiplicative factor:

Z =
X

G2L
qCvl

Where the sum is now over all possible graphs on L.
So far we’ve considered all edges equivalent, but this is of course neither necessary nor

realistic. Without making the energies q-dependent, we can already define multiple classes

of edges on the lattice (e.g. horizontal and vertical edges on the square lattice). The

partition sum is then generalised to:

Z =
X

G2L
qC
Y

r

vlrr

where r labels the di↵erent classes of edges.

We now have a lattice with a (possibly disconnected) graph G. We can then look at the

so-called ‘medial’ lattice L0 associated to L. The construction of this lattice is explained

in detail in [2], and we show an example for a general planar lattice in figure 5.4.
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Figure 5.4: A planar lattice (red dots, solid lines) and its medial, or surrounding lattice
(blue dots, dashed lines).

This medial lattice in a sense ’surrounds’ the original lattice, and around every connected

component of a graph G on L, we can draw a polygon on L0 (we use the definition of

polygon here where the interior of the shape is excluded). Components of G with cycles

will be associated to two polygons on L0, one surrounding, and one within the cycle (see

figure 5.5).

Denoting the number of polygons on L0 by p, and the number of cycles in G by S, L0 is

decomposed into p = C + S polygons, and we can use the Euler characteristic for planar

graphs:

v � e+ f � C = 1

Where v is the number of vertices, e the numbers of edges, f the number of faces3, and C

the number of connected components. In our case:

N �
X

r

lr + (S + 1)� C = 1

3We include the exterior face here, and take the point of view where a connected graph corresponds to
a stereographic projection of a polygon decomposition of the sphere (with Euler characteristic 2).
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Figure 5.5: Here we see the individual steps in the construction of the polygons. We start
with the square lattice (red dots) and generate the medial lattice (left). Then, we draw the
Fortuin-Kasteleyn clusters corresponding to a term in the partition sum (middle). Finally,
we draw loops on the medial lattice, in such a way that every connected component gets
surrounded by a loop, and their cycles get filled in with loops (right).

Or equivalently

2C = N + p�
X

r

lr

So that we can now rewrite the partition sum as:

Z = qN/2
X

P2L0

qp/2
Y

r

xlr
r (5.16)

Where we have defined xr := q�1/2vr and the summation is now over all polygon decom-

positions P of the medial lattice L0.

Models on Diagrams The construction we have just seen is an example of a more general

procedure, introduced by Pasquier in the late 80s [25] [26]. He considered spin models on

periodic lattices, where the spins take values on a graph (we will refer to these models as

Pasquier models). This means the following:

• Take any graph G.

• Sites of the lattice can be in either of r states, or heights, where r is the order of the

graph G, i.e. the number of nodes.
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a c

b

b

Figure 5.6: Our original (rotated) square lattice with vertices (red dots) in states a, b and
c. Two of the vertices are in the same state b, so they share a bond (black line), and create
two domain walls (solid blue line) on the dual lattice (blue dots and dashes)

• Two connected (e.g. nearest neighbour) sites (↵, �) can be in states (a, b) if and only

if the nodes a and b share an edge in G.

These diagrams come with a so-called adjacency matrix A. We write a ⇠ b if nodes a and

b share an edge in G. The adjacency matrix is then defined as follows:

Aab =

8
<

:
1 if a ⇠ b

0 otherwise
(5.17)

Since each vertex takes a value on the diagram, domain walls form between sites in states

that share an edge in the diagram. These domain walls can then be naturally defined as

running along the edges of the dual lattice (see fig. 5.6).

We give a local boundary between state a and b the following weight:

Aab

⇣Sa

Sb

⌘
1/4

(5.18)

Resulting in the partition sum of local weights:

ZG =
X

cfg.

Y

vert. k

 
Wk

Y

l.d.w.

Aij

⇣Sj

Si

⌘
1/4
!

(5.19)

The first sum is over all allowed height configurations of the lattice, where each configura-

tion gets a weight that is the product over all vertices of some factor Wk that just depends
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on the local geometry of the domain walls, and a product over the actual local domain

walls (l.d.w.) present. Most importantly, since one always encounters four more turns

clockwise than counterclockwise4 (or the other way around), a full domain wall, a closed

loop, will then always amount to

Aij

⇣Sa

Sb

⌘
(5.20)

The trick now is to define the weights Sa in a clever way. If we define the vector of weights S

to be the Perron-Frobenius eigenvector5 of of the matrix A, then summing over all allowed

heights inside the loop, as we will invariably do when calculating the partition sum, will

give the following weight to the loop:

W
loop

=
X

j

Aij
Sj

Si

= ⇤ (5.21)

Where ⇤ is the Perron-Frobenius eigenvalue of the matrix A.

Note, however, that when we impose periodic boundary conditions in at least one direction,

loops can form that actually don’t contribute ⇤, but rather just Aab, since their left- and

right turns cancel to close in on themselves around the cylinder. The product over these

weights is always 0 (if two adjacent domains are not in adjacent states on G) or 1. Their

net e↵ect is thus that we have to sum over all allowed configurations of a stack of slices of

the cylinder/torus. On the torus, the last sum that has to be done is thus over all possible

closed paths of Nw steps on the the diagram, where Nw is the number of domains that

wind the periodic cycle. That number is simply the trace of ANw . The full partition sum

is therefore:

Z =
X

j

X

cfg.

Y

vertices k

Wk ⇤Nc �Nw
j (5.22)

4That is, as long as every bend along a domain wall is a quarter (⇡/2) turn, one can generalise this to
other lattices with bending angle � by changing the exponent 1

4 to �
2⇡ .

5This is the vector whose existence is implied by the Perron-Frobenius theorem: A real, square, non-
negative matrix will have a unique largest real eigenvalue, and there is a basis in which the components
of the corresponding eigenvector are all nonnegative.
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0

1

2

3

q

Figure 5.7: The diagram associated to the q-state Potts model. There are q nodes on the
right, each connected to a ‘neutral’ node 0 on the left.

Where � is the vector of eigenvalues of A.

What is left to specify are the weights Wk, that only depend on the geometry of the local

domain walls. This depends on the algorithm we used to draw the domain walls. To

arrive at the partition sum of the Potts model on a square lattice L, we use the following

construction:

• Take as sites of a new lattice L0 the sites of the union of L and its dual, and connect

these sites diagonally to their nearest neighbours (this is e↵ectively a doubling of the

square lattice, and a rotation by ⇡/2).

• The graph corresponding to the q-state Potts model is then the one in figure 5.7.

• Draw the Fortuin-Kasteleyn clusters of sites in the same states on the original lattice

L (e↵ectively ignoring the neutral supercluster in state 0).

• Draw domain walls along the edges of the lattice dual to L0.

• Take as local weights Wk either 1 or v, corresponding to a domain wall configuration

that reflects respectively an open or closed edge in the Fortuin-Kasteleyn decompo-

sition.

We e↵ectively just doubled our lattice and introduced a neutral site to make neighbouring

spins on our original lattice independent, rather than determined by an adjacency matrix.

We also used that the medial square lattice and the dual of the union of the square lattice

and its dual have the same sites. One can check that this indeed gives the exact same
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loops, and the q ⇥ q connectivity matrix of the diagram in figure 5.7 is:

APotts =

 
0 1 ... 1
1

.

.

1

!
(5.23)

with eigenvalues

� =
p
q,�p

q, 0, ..., 0 (5.24)

We get the same loops, and the same loop weight, as in equation (5.16), but the added

information that for loops around a periodic cycle, we have to sum over
p
q and �p

q

as weights for non-contractible loop. Our full partition sum for such a Pasquier model

becomes:

Z =
X

j

X

P2L
⇤Nc �Nw

j

Y

r

vlrr (5.25)

An Example To verify this, and see the translation in action, let’s look at a simple case:

an L = 1 anisotropic Ising model with SW!NE coupling J
1

, and SE!NW coupling J
2

.

It comes with the following transfer matrix:

T
Ising

=

0

BB@
eJ1+J2 e�J1�J2

e�J1�J2 eJ1+J2

1

CCA (5.26)

With eigenvalues:

2

664
2 sh(J

1

+ J
2

)

2 ch(J
1

� J
2

)

3

775 (5.27)

Once we’ve drawn the loops on the medial lattice, the following vertices appear:
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a b e f

Where we give the following weights according to the compatible Ising states:

a =
eJ1 � eJ1p

2
(5.28)

b = e�J1 (5.29)

e =
eJ2 � eJ2p

2
(5.30)

f = e�J2 (5.31)

An L = 1 Ising model thus corresponds to an L = 2 loop model, and we get the following

possible loop configurations (where we’ve also shown the Ising sites in red, and boldened

the compatible FK-clusters):

1 2 3 4

5 6 7 8

9

We call two blue vertical edges that are directly connected inside connected, like the bottom

ones in cfg. 1. Edges that are connected by crossing the periodicity, like the bottom ones

in cfg. 9, are called outside connected. Edges that are not connected at all, like the ones in

cfg. 3, shall be called disconnected. We can then write the transfer matrix as an operator
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that maps di↵erent loop connectivity patterns into each other. In the basis where the inside

connected state is (1, 0, 0), outside connected = (0, 1, 0), and disconnected = (0, 0, 1), the

transfer matrix then becomes:

T
loops

=

0

BBBBBB@

af wc + ae+ bf af wn.c. af

be wn.c. be wc + bf + ae be

0 0 bf + ae

1

CCCCCCA
(5.32)

Where wc is the weight of a contractible loop, and wn.c. that of a non-contractible loop.

Equation (5.22) then tells us that to get all eigenvalues of the Ising model, the non-

contractible loop weights have to take di↵erent values, namely all eigenvalues of the q = 2

Potts connectivity matrix: (
p
2,�

p
2, 0). That means we will get a total of 3 ⇥ 3 = 9

eigenvalues.

±wn.c. = wc =
p
2 =)

2

6666664

p
2 (chJ

2

shJ
1

+ (chJ
1

� 2shJ
1

) shJ
2

))

p
2 (chJ

2

shJ
1

+ (chJ
1

� 2shJ
1

) shJ
2

))

p
2 ch(J

1

+ J
2

)

3

7777775
(5.33)

wn.c. = 0 , wc =
p
2 =)

2

6666664

p
2 (chJ

2

shJ
1

+ (chJ
1

� 2shJ
1

) shJ
2

))

p
2 ch(J

1

� J
2

)

p
2 sh(J

1

+ J
2

)

3

7777775
(5.34)

So we see that we indeed had to take di↵erent weights for the non-contractible loops to

find all original Ising eigenvalues (up to an irrelevant factor
p
q). Note also that we greatly

increased our Hilbert space in this representation of our model, and we get way too many

eigenvalues. However, throughout all these translations, we only pick up constant factors,

and the original eigenvalues can still be identified by their mutual ratios. It is thus still

possible to accomplish our original goal of identifying certain eigenvalues with those of free
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Figure 5.8: Vertices on the medial square lattice (blue) come in two flavours: those lying
on vertical edges of the original (rotated by ⇡/2 ccw) lattice (left), and those lying on
horizontal edges (right).

fermions.

Locality Lost Note that we started with a model wherein q emphatically had to take

integer values. In this loop representation however, it just appears as a regular parameter,

and nothing is stopping us from letting it take arbitrary values. This freedom did come

at a steep price though: we were forced to introduce non-local contributions of loops. We

will now redefine our statistical ensemble so that all weights will be local again.

We start by giving each loop an orientation, either clockwise or anticlockwise. At each

vertex in L0, there will then be two oriented loop elements, where the path bends an angle

↵ resp. � to the right (bending to the left just counts as a negative angle to the right).

There are eight of these local loop configurations (see bottom of figure 5.9). We assign a

weight z↵+� to each such vertex. On top of that, note that there are two possibilities for

a vertex in L0 (as seen in figure 5.5): either it lies inside a loop (i.e. on an edge of an FK

cluster in L), or it lies just outside it (i.e. an empty edge in L). To each vertex inside a

loop we assign an extra weight xr if it corresponds to an edge of type r. If we now restrict

our analysis to the square lattice, L0 is actually a bipartite lattice, with a sublattice with

only vertices that are on vertical edges of L, and one with only vertices that are on its

horizontal edges (see figure 5.8). If the vertex was on a vertical (horizontal) edge, we only

assign a weight xr if local loop configurations connect points vertically (horizontally).

To find out which value of z corresponds to our original weights, note that by summing

over loop orientations, and multiplying vertices, every contractible loop6 now contributes

z2⇡ + z�2⇡ to the total partition sum, since the sum of all bends around a loop must equal

2⇡. The full partition sum then becomes:

6We will cover the case of non-contractible loops in the next section.
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Z =
X

P2L0

⇣
(z2⇡ + z�2⇡)p

Y

r

xlr
r

⌘
(5.35)

To relate our new degree of freedom z to our Potts parameter q, we introduce an auxiliary

parameter ✓, and define the following:

z = e✓/2⇡ (5.36)

q1/2 = 2 cosh ✓ (5.37)

We get our original partition sum (5.16) back7, and each contractible loop again contributes
p
q.

As seen in figure 5.9, there are four local loop configurations that are together associated

to only two di↵erent arrow configurations. Since we’re summing over all configurations

anyway, we might just as well take the top six vertices as our elementary weights !
1�6

,

and simply take the sum of allowed loop vertices as the weight for the arrow configuration.

We thus get a description of the square lattice Potts model in terms of six local arrow

configurations with partition sum:

Z
6V =

X

cfg.

6Y

r=1

(!(h)
r )n

(h)
r (!(v)

r )n
(v)
r (5.38)

Where the sum is over all arrow configurations, the indices (h) and (v) refer respectively

to the horizontal and vertical sublattice, ni counts the number of vertices of type i, and

!(h) = {1, 1, xh, xh, e
�✓/2 + e✓/2xh, e

✓/2 + e�✓/2xh} (5.39)

!(v) = {xv, xv, 1, 1, e
✓/2 + e�✓/2xv, e

�✓/2 + e✓/2xh} (5.40)

This set of configurations was first investigated as a model for the residual entropy of frozen

water, and is therefore also known as the ice-rule. It contains a rich algebraic structure

that we will further discuss in the context of the Bethe Ansatz.

7Up to an irrelevant global factor of qN/2.
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1 2 3 4 5 6

Figure 5.9: The six arrow configurations obeying the ice-rule (top), and their corresponding
local loop configurations (bottom)

Duality The weights we have defined for our vertices can still be arbitrarily anisotropic.

While nicely general, it would be nicer (in fact much nicer, as will become clear when

discussing the Bethe Ansatz), to only have to deal with one set of weights. Setting xh = xv

doesn’t solve this problem, and we are also emphatically interested in the critical Ising

model, not the homogeneous.

When we demand the Potts model to be critical (i.e. xhxv = 1 or equivalently J
2

=

log coth(J
1

/2)), the weights !(v)
i in (5.40) can all be written as xh!

(h)
i . These extra factors

xh can be taken outside of the product and the sum and just scale the partition sum by

an irrelevant factor, leaving us with just one set of weights. The critical Ising model thus

corresponds to a homogeneous vertex model, which will turn out to be very nice.

A Twist So far, we’ve acted like our lattice was infinite and not considered loops around a

periodic cycle. If instead we choose our lattice to be bounded and periodic in one direction,

the obvious choice is to impose fully periodic boundary conditions on the cycle, e↵ectively

wrapping our lattice around a cylinder8. This reintroduces the complication we’ve seen

before, since this new topology allows for polygons whose edges don’t have angles that

8This leaves the other boundary conditions unspecified. We will keep using our results from earlier on
the torus, but e↵ectively set one cycle to be so long that no loops span it, which is harmless since we can
interpret one of the cycles as (imaginary) time anyway.
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Figure 5.10: A six vertex model on a lattice (in blue), with a seam (red dashed) running
along the cylinder through the edges. Arrows crossing the seam get an extra factor in their
Boltzmann weight.

sum to ±2⇡. This situation is solved by adjusting the boundary conditions. We introduce

a ‘seam’ along the side of the cylinder, as if cutting it open back into a plane (see figure

5.10). We then give every arrow pointing to the right (left) through this seam an extra

weight e✓ (e�✓). A polygon that loops around the cylinder will now contribute a total of

e✓ + e�✓ = 2 cosh(✓) = q1/2 to the partition sum, whereas a polygon that crosses the seam

but doesn’t wrap the cylinder gets an extra factor e✓e�✓ = 1, since it will necessarily cross

the seam twice, in di↵erent directions. These are now fully consistent with our previous

calculation, and the system is again described by equation (5.38), but with this extra weight

added for edges that cross the seam. The exponentiated parameter ✓ is referred to as the

twist in these twisted boundary conditions. We’ve seen before that the corresponding loop

model actually demands summing over di↵erent weights for the non-contractible loops,

which now just translates to summing over di↵erent twists.

5.3 The twisted algebraic Bethe Ansatz

The reason for writing the Potts model as a six-vertex model is that the six-vertex model

is particularly well suited for analytic treatment with the Algebraic Bethe Ansatz (ABA).

The key problem is the diagonalisation of the transfer matrix and the resulting expression

for the spectrum. This spectral problem is generally hard and has no systematic treatment,
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so the ABA uses the technique of commuting transfer matrices. By defining a whole one-

parameter family of transfer matrices that all commute with the original transfer matrix,

we could maybe exploit this extra degree of freedom, since once we can diagonalise just one

of these matrices, their intercommutativity ensures that all are diagonal. We will use a bit

of physical intuition from the quantum-classical mapping and refer to the vertical direction

of our 2D classical lattice as the quantum space, and while we will call the horizontal the

auxiliary space.

What we are looking for is thus a one parameter family of transfer matrices ⌧(�) 2 End(H),

where H is the quantum Hilbert space of a row in our lattice, such that

[⌧(�), ⌧(µ)] = 0 8 �, µ 2 C (5.41)

The second important step is to define a transfer matrix as a partial trace over the auxiliary

space A of an object T (�) acting in a larger space A⌦H:

⌧(�) = TrA(T (�)) (5.42)

We will call this object T (�) the monodromy matrix. We can graphically represent a ma-

trix element of T (�) as:

T i
j (�) = i j

Where i and j are states on the horizontal edges, and the vertical line now represents the

Hilbert space of our full quantum chain. From this, we see that tracing over the horizontal

direction corresponds to a transfer matrix of a quantum chain with periodic boundary

conditions.

The commutator (5.41) then becomes:

[TrAT (�),TrAT (µ)] = 0 (5.43)
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If we add a second auxiliary space and define operators in the space A
1

⌦A
2

⌦H as

T
1

(�) = T (�)⌦ id
2

and T
2

(�) = id
1

⌦ T (�) (5.44)

So that TrA1T2

(�) = T (�) etc., we can write the commutator as

[TrA2T1

(�),TrA1T2

(�)] = TrA1⌦A2 [T1

(�), T
2

(µ)] (5.45)

Writing out the commutator, we get the expression:

TrA1⌦A2

�
T
1

(�)T
2

(µ)
�
= TrA1⌦A2

�
T
2

(µ)T
1

(�)
�

(5.46)

Where the trace only enjoys its cyclic property in the space that is being traced out,

making this a non-trivial statement. We can, however, still exploit this cyclicity since

(5.46) certainly holds if there is a winding matrix R
12

(�, µ) that flips the order of the

monodromy matrices around by acting only in the space A
1

⌦A
2

:

R
12

(�� µ)T
1

(�)T
2

(µ)R
12

(�� µ)�1 = T
2

(µ)T
1

(�) (5.47)

Pictorially, we can represent the product T
1

(�)T
2

(µ) as:

T
1

(�)T
2

(µ) =

T
2

(µ)

T
1

(�)

Note that we now look at the whole monodromy matrix so we don’t specify edge states.

Equation (5.47) can now be represented by:
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�

µ

µ

�

R
12

R
12

T
2

T
1

T
1

T
2

=

This is a version of the Yang-Baxter equation and finding matrices T and R that satisfy

it is equivalent to identifying an integrable model. This statement maybe sounds deeper

than it is, since satisfying this equation is often taken as the definition of integrability.

We can now start specifying our spaces a bit more. The most insightful (and in our case

su�cient) choice for an auxiliary space is to choose A
1

' A
2

' C2, where ' denotes an

isomorphism. Note that if the vertical quantum space per site is also C2, which corresponds

to binary complex states on sites, we get a representation of the Yang-Baxter algebra that

looks a lot like something we’ve seen before. In our discussion of Lie algebras, we saw that

we can form the adjoint representation of an algebra by its structure constants, taking as

the vector space in which the algebra acts the algebra itself. We here do something similar

by taking the horizontal and vertical spaces the same, so we will call this the adjoint

representation of the Yang-Baxter algebra9.

This invites us to write our monodromy matrix as a 2 ⇥ 2 matrix, with entries taking

operator values in H.

T (�) =

0

BB@
A(�) B(�)

C(�) D(�)

1

CCA (5.48)

Denoting our binary C2-spanning states by 0 and 1, we can represent these operators as:

9This is a very natural representation to work in, since interpreting the two directions as simply the
two directions of a classical 2D lattice model (instead of space and time of a quantum chain), then both
directions should be treated on equal footing; Generating the partition sum by multiplying vertical or
horizontal transfer matrices should both be allowed and lead to the same result.
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A(�) = 0 0 B(�) = 1 0

C(�) = 0 1 D(�) = 1 1

Having this more or less explicit form for T (�), we can now try to find matrices R(�) so

that the pair (R, T ) will satisfy the Yang-Baxter equation (5.47). One can write out the

tensor products and would find that the following R-matrix su�ces:

R(�) =

0

BBBBBBBBBB@

a(�) 0 0 0

0 b(�) c(�) 0

0 c(�) b(�) 0

0 0 0 a(�)

1

CCCCCCCCCCA

(5.49)

Note that we’ve cheated a little bit by calling each direction just C2, acting as if our chain

is only one site long. In general, for a chain of length L, we need a way to extend the

action of the monodromy matrix over L sites. We can do this by defining an extra product

� on the Yang-Baxter algebra, called a co-product: � : A⌦H ! (A⌦H)⌦ (A⌦H).

It works on our monodromy matrix as follows:

�T (�)ij =
X

k

T i
k(�)⌦ T k

j (�) (5.50)

It thus extends the operator so that it can act on a longer chain, summing over all internal

states of the horizontal direction:
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� =
P

k

 
i j

!  
i j

!
k

To fully define the Yang-Baxter algebra as a bialgebra and use this co-product to iteratively

define our operators on the full chain, we would have to show some more properties of the

algebra. Fortunately, we are physicists and we can get away with some useful abuse of

notation. Reassured by the fact that there is a way to define these operators along the

whole chain, we simply decompose our Hilbert space as H = ⌦N
j=1

Hj and write our full

monodromy matrix as a product over local matrices Li:

T (�) = LN(�)LN�1

...L
1

(�) (5.51)

Each Li now acts in one separate copy of C2.

Gauge Freedom In the adjoint representation, we then have Li(�) = R(�), which might

worry the attentive reader, since we now have only three free parameters (a, b and c) to

define our local weights, whereas we previously needed four di↵erent ones (see eq. (5.39))

to define the weights of the homogeneous 6-vertex model, which is what we’re trying to

solve after all. Recall, however, that we have implicitly been imposing periodic boundary

conditions by tracing over all these local operators to get our transfer matrix. On a periodic

lattice, the ice-rule actually has an interesting consequence: the total number of arrows

pointing north and the number pointing south is conserved along each row of vertical edges.

This means that there are as many ‘sources’ as ‘sinks’ per row of vertices, which are re-

spectively !
5

and !
6

in eq. (5.39). So say that we have two di↵erent weights, parametrised

by some factor k: !
5

= ck, !
6

= c/k, then we only get terms in our partition sum in which

there are as many !
5

as !
6

, and the factors of k and 1/k exactly cancel. We thus get a kind

of ‘gauge’-freedom in defining our weights !
5

and !
6

. Taking c = e�✓/2
p
e✓ + x

p
1 + e✓x

and k = �
p
1 + e✓x (

p
e✓ + x)�1, we find back the weights in equation (5.39) for !

5

= ck

and !
6

= c/k. We can thus get away with only three free parameters in our L-matrix.

Let’s Twist Again Another nuance to address are the boundary conditions. Recall that
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the six-vertex model we’re trying to solve actually had a twist in its boundary conditions,

depending on the arrow configurations on a seam along the cylinder. Now that we have

this local formulation of the monodromy matrix, this can be neatly implemented by an

additional twist operator, often referred to in the literature as the Sklyanin K-matrix, that

modifies one of the local operators. If we choose to place the seam between the Nth and

the first spin, we can write the following:

T (�) = L̃N(�)LN�1

(�)...L
1

(�) (5.52)

With

L̃N(�) = LN(�)K(✓) (5.53)

Where we introduced the twist matrix K(✓), an operator in A ⌦ HN that acts in the

auxiliary space A as a 2x2 matrix:

K(✓) =

0

BB@
e✓ 0

0 e�✓

1

CCA⌦ idH (5.54)

Explicitly writing out the tensor product:

LN(�) =

 !
⌦

0

BBBB@

1

CCCCA
(5.55)

And imposing the ice-rule, we indeed get a matrix in the form of R(�), and L̃N(�) gets

exactly the right twisted weights.

We will denote operators on chains with twisted boundary conditions with tildes, and thus

write:
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T̃ (�) =

0

BB@
Ã(�) B̃(�)

C̃(�) D̃(�)

1

CCA =

0

BB@
A(�)e✓ B(�)e�✓

C(�)e✓ D(�)e�✓

1

CCA (5.56)

Looking at the shape of T̃ (�), it is now tempting to think of B̃(�) and C̃(�) as respectively

raising and lowering operators. We start by defining the vacuum. It should have the

properties that it diagonalises Ã(�) and D̃(�) 10, and that it is annihilated by the lowering

operator:

Ã(�) |0i = e✓ a(�)L |0i (5.57)

D̃(�) |0i = e�✓ d(�)L |0i (5.58)

C̃(�) |0i = 0 (5.59)

Where we take the Lth power since these operators should we understood as co-products

extended over the whole chain: Ã(�) = e✓�L�1A(�).

We can now look at ‘excited’ states that still diagonalise the transfer matrix by demanding

that B̃(�) excitations are still eigenstates of Ã(�) + D̃(�):

⇣
Ã(�) + D̃(�)

⌘ MY

j=1

B̃(�j) |0i = ⇤⌧ (�|{�J}M)
MY

j=1

B̃(�j) |0i (5.60)

Where we can now use the results from normal untwisted ABA for the six-vertex model to

look at how these states behave. A more detailed derivation is given in appendix A.6. The

main idea is that we use the Yang-Baxter relation for the R-intertwining of our monodromy

matrices to derive a set of commutation relations that allow us to commute the A(�) and

D(�) operators through the B(�)s. Demanding that these excitations are still eigenstates

of ⌧̃(�) gives us the twisted Bethe equations:

10This is a su�cient condition to diagonalise the transfer matrix ⌧̃(�) = Ã(�) + D̃(�)
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e2✓
⇣a(�i)
b(�i)

⌘L
=

MY

k 6=i

a(�i � �k)b(�k � �i)

b(�i � �k)a(�k � �i)
(5.61)

Note that we have so far only chosen the shape of our R-matrix, and not it’s actual

parametrisation in terms of the spectral parameter. There is still a number of di↵erent

options that all satisfy the correct algebra and we will continue now with the hyperbolic

trigonometric parametrisation, giving us:

R(�) =

0

BBBBBBBBBB@

1 0 0 0

0 sinh�
sinh�+⌘

sinh ⌘
sinh�+⌘

0

0 sinh ⌘
sinh�+⌘

sinh�
sinh�+⌘

0

0 0 0 1

1

CCCCCCCCCCA

(5.62)

Resulting in the Bethe equations:

 
sinh (�i)

sinh (�i + ⌘)

!L MY

k 6=i

sinh (�i � �k � ⌘)

sinh (�i � �k + ⌘)
= e�2✓ (5.63)

Given such a set {�j} that satisfy the Bethe equations, we can then look at the spectrum

of eigenvalues of the transfer matrix:

⇤⌧ (�|{�i}M) = e✓
MY

i=1

sinh (�i � �+ ⌘)

sinh (�i � �)
+ e�✓

 
sinh (�)

sinh (�+ ⌘)

!L MY

i=1

sinh (�� �i + ⌘)

sinh (�� �i)

(5.64)

Note how such a radical change in our system, twisting the boundary conditions and losing

translational invariance11, in fact only resulted in very minor changes in our Bethe Ansatz

11Actually, one could ”smear out” the twist over all vertices and give each vertex on a chain of length
L an extra weight that is the Lth root of the twist we put at the seam. While leading to the exact same
partition sum, this actually restores translational invariance.
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equations and the eigenvalues of the transfer matrix. We now have a set of quantum

numbers {�j} that specify a certain eigenvalue of the transfer matrix ⌧̃(�). We can tune

� so that it corresponds to our original critical weights J
1

and J
2

and find a one-to-one

correspondence between eigenvalues. However, one usually rewrites the BAEs in their

logarithmic form by simply taking the logarithm of both sides, after which new quantum

numbers appear that account for the multivaluedness of the complex logarithm. Since

these logarithmic BAEs are usually numerically more stable, these are the conventional

Bethe quantum numbers most commonly seen in the literature12.

12The uniqueness of a set {�j} given the Bethe quantum numbers is a very subtle point, and will not
be addressed here, but rather assumed.
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A Path Forward

6.1 The dilute A3 model

In the previous sections, we have seen how a series of equivalent partition sums can allow

for a translation between a free fermionic description of a spin model, and a description

in terms of Bethe quantum numbers. This way, eigenvalues of the free fermion transfer

matrix (section 5.1) can be directly identified with eigenvalues that correspond to certain

Bethe quantum numbers. We have shown such a translation in the context of a critical

spin-1
2

Ising model (i.e. self-dual q=2 Potts model), but the actual model of interest here

is the dilute A
3

model in [3], where the S-matrix from Zamolodchikov [37] was found in

the (thermodynamic) Bethe Ansatz. We will first define this model and its Bethe Ansatz,

and then describe how the authors made the link with E
8

.

ADE models It has been shown that the Pasquier models are critical whenever the largest

eigenvalue of the adjacency matrix is smaller than or equal to two [32]. The graphs for

which this is the case have been thoroughly categorised; They are the family of simply laced

Dynkin diagrams (those of type An, Dn and En in the classification of Lie algebras, and

their a�ne extensions). Not only are these theories critical, it is actually possible to choose

the Boltzmann weights of the configurations in figure 6.1 such that they satisfy the Yang-

Baxter equation and the whole system becomes integrable [32]. Recall that to specify a

Pasquier model, we need the graph that encodes its rules, but we also need to independently

specify the local weights Wk. When constructing it to emphatically correspond to a Potts

model, we found that we needed two of these local weights, 1 or v, corresponding to the
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Figure 6.1: The nine possibilities of domain wall geometry around a vertex of the dual
square lattice.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19

Figure 6.2: The 19 possible vertex configurations.

two possible edges in the Fortuin-Kasteleyn cluster construction, either an edge or no edge.

This lead to two loop configurations at every vertex, making the loops dense. However,

nothing restricts us to this. We can consider the more general case in which there are for

example nine possible local geometries, as shown in figure 6.1. Where we previously only

gave the rightmost two geometries a nonzero weight, we can now allow them all to appear,

leading to loop configurations where vertices can also contain just one or even zero local

loop configurations. This leads to global loop configurations that we will call dilute.

The dilute A
3

model is then defined as the model in which we take the diagram to be the

A
3

Dynkin diagram, and we have nine independent local weights for each vertex in figure

6.1. We can then follow the same procedure as before, and orient the loops to arrive at

the corresponding vertex model and its Bethe Ansatz.

The Izergin-Korepin Vertex Model Recall from earlier that a loop model can be

rewritten in terms of a vertex model to restore the locality of the weights. We take the 9

vertices in fig. 6.1 of the dilute loop model, and put arrows as we did in the case of the

dense loop model. The extra possibilities now give us 19 allowed vertices where we had 6

before (see figure 6.2).

These 19 vertices can again be given weights that satisfy the Yang-Baxter equation, and

lead to the following Bethe Ansatz equation [33] [34]:
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cosh (uj � 1

2

i✓)

cosh (uj � 1

2

i✓)

!L

= �s
MY

k=1

sinh (uj � uk � i✓) cosh (uj � uk +
1

2

i✓)

sinh (uj � uk + i✓) cosh (uj � uk � 1

2

i✓)
(6.1)

With eigenvalues of the transfer matrix:

⇤(�) = (sin(�+
3

4
✓) cos(�+

1

4
✓))Ls

MY

j=1

sinh(uj � 5

4

i✓ + i�)

sinh(uj � 1

4

i✓ + i�)
(6.2)

+(sin(�+
3

4
✓) cos(�� 3

4
✓))Ls

MY

j=1

sinh(uj +
3

4

i✓ + i�) cosh(uj � 3

4

i✓ + i�)

sinh(uj � 1

4

i✓ + i�) cosh(uj +
1

4

i✓ + i�)
(6.3)

+(sin(�� 1

4
i✓) cos(�� 3

4
✓))Ls�1

MY

j=1

cosh(uj +
5

4

i✓ + i�)

cosh(uj +
1

4

✓ + i�)
(6.4)

Using the following identities:

cosh(x+ iy) = cosh x cos y + i sinh x sin y (6.5)

sinh(x+ iy) = sinh x cos y + i cosh x sin y (6.6)

log
⇣x+ iy

x� iy

⌘
= 2i arctan

y

x
(6.7)

We can rewrite these equations into their numerically more stable logaritmhic form:

�2iL arctan
⇣
tan

✓

2
tanh uj

⌘
=

(6.8)

log s+ 2i
MX

k=1

 
arctan

⇣tanh(uj � uk)

tan ✓

⌘
+ arctan

⇣
tan

✓

2
tanh(uj � uk)

⌘!
+ (

M + 1

2
+ Ĩj)2⇡i

Where s is the value of the extra weight arrows pick up when crossing the seam, and Ĩj

is an integer to account for the multivaluedness of the complex logarithm. We can now
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define our Bethe quantum numbers Ij := M+1

2

+ Ĩj, and see that they are integers (half

odd integers) for M odd (even). We have thus arrived at an explicit way to calculate the

eigenvalues of the critical dilute A
3

model and link each of these to a set of Bethe quantum

numbers.

An O↵-critical Extension This is of course good news for anyone who likes to solve

critical models, but we are actually interested in an o↵-critical model, namely a magnetic

perturbation of a critical model. This is where the real magic happens. It turns out that

the dilute An models with odd n allow for o↵-critical Z
2

-odd perturbations that leave the

system integrable. The e↵ect of this perturbation can be captured by a modification of the

parametrisation of the weights in terms of elliptic functions, still allowing one two write

down the full Bethe Ansatz equations (BAEs). The simplest nontrivial case is n = 3, and it

is this model that caught the interest of Bazhanov, Nienhuis and Warnaar in [3]. Another

reason to consider this model in relation to the Ising model is the fact that the Dynkin

diagram A
3

is actually identical to the q=2 Potts diagram (see figure 5.7).

For the explicit form of the elliptic parametrisation, I refer the interested reader to [3].

The key point is that one can write down the weights in terms of elliptic Jacobi ✓ functions

of two variables:

✓
1

(z, q) =
1X

n=�1
(�1)n�1/2q(n+1/2)2e(2n+1)iz (6.9)

The variable z takes on the role of spectral parameter, while the variable q corresponds to

the perturbation. Setting q to zero brings us back to the original critical weights, while

varying it breaks the Z
2

symmetry. It can thus be identified with an external magnetic

field. The BAEs can be rewritten in terms of these generalised weights, and lead to an

expression for the eigenvalues of the transfer matrix, again in terms of Bethe quantum

numbers. However, these equations are generally hard to solve, and the authors of [3]

started by looking at the thermodynamic limit where L ! 1.

Motivated by a numerical study of this limit, they claim that solutions to the BAEs come

in only nine di↵erent types, called strings. A string (of type t) is defined as a set of complex

numbers {↵j,k} in the complex plane of Bethe roots, parametrised as:

↵
(t)
j,k = ↵

(t)
j + i(�(t)

k + ✏(t)r) , k = (1, ..., n(t)) (6.10)
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A string is thus a set of n(t) numbers that all lie on a vertical line in the complex plane,

around the real number ↵(t)
j , with vertical spacings (�(t)

k + ✏(t)r)1.

In the thermodynamic limit, the roots start to form a continuum along the real axis, and

the only string states that survive are the following nine:

↵
(t)
j,k = ↵

(t)
j + i(�(t)

k + ✏(t)r) , k = (1, ..., n(t))

t n(t) �(t)/5 ✏(t)

0 1 (0) 0

1 2 (-1, 1) 1

2 4 (-4, -2, 2, 4) 0

3 6 (-7, -5, -1, 1, 5, 7) 1

4 8 (-10, -8, -4, -2, 2, 4, 8, 10) 0

5 10 (-13, -11, -7, -5, -1, 1, 5, 7, 11, 13) 1

6 7 (-14, -6, -2, 0, 2, 6, 14) 1

7 4 (-3, -1, 1, 3) 0

8 5 (-12, -8, 0, 8, 12) 1

The BAEs then become integral equations for the density of these strings. Note that

eight out of nine string states (all except the trivial one-string) are composed of complex

numbers. Complex roots, or rapidities, cause the Bethe wave function of a string to be

exponentially suppressed in the separation of its components, and as such correspond to

bound states. It is therefore a promising sign that we find exactly eight bound states in

the thermodynamic spectrum. In fact, our suspicions are confirmed when looking at the

S-matrix of these bound states. Remarkably, the authors find the exact same S-matrix as

Zamolodchikov in [37]. The conjecture by Zamolodchikov has been confirmed: There is

1The parameter r is determined by the choice of vertex weights and in our case of dilute A3 we have
r = 16.
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indeed a solvable lattice model in the universality class of the magnetically perturbed Ising

model that contains the same E
8

S-matrix. It is the integrable o↵-critical Z
2

breaking

extension of the dilute A
3

model. Finding this put a lot of minds at ease, but also left a

big question on the table: What are these excitations on the lattice that somehow know

about structure of E
8

?

Summary We want to understand the excitations of the magnetically perturbed Ising

model, but unfortunately we have no explicit solution to this model. However, the authors

of [3] found a di↵erent model, one that we can solve with the Bethe Ansatz, that apparently

lies in the same universality class in the sense that it shares its thermodynamic excitation

spectrum with the magnetically perturbed Ising model around the critical point. They

were able to explicitly identify these eight particles in terms of string solutions to the

thermodynamic Bethe Ansatz of this dilute A
3

model. In light of our previous discussion

on the relationship between the 6-vertex Bethe Ansatz and the critical Ising free fermions,

we are now naturally lead to the question: Can we link the eight excitations of the o↵-

critical dilute A
3

model to some simpler description of the model, for example in terms

of its own free fermions? To immediately focus on this o↵-critical extension would be a

bit hubristic, so lets again start with a simpler case and begin with the critical dilute A
3

model.

6.2 Free fermions in the critical dilute A3 model

The dilute A
3

model lies in the universality class of the Ising model. Its critical behaviour

should be thermodynamically the same, but also at finite system size we expect there to

be a one-to-one mapping between the eigenvalues of the transfer matrix of the magnetic

Ising model, and those of the dilute A
3

model. A numerical investigation showed that

the dilute A
3

spectrum did not have an exact free fermion character, but this is simply a

finite size e↵ect, and we can still associate an eigenvalue to the free fermion state it would

thermodynamically become.

We will use the following three characteristics of each eigenvalue and its state to identify

these correspondences:

1. The (approximate) numerical eigenvalue.
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2. The total momentum of the corresponding eigenstate.

3. The conformal sector to which the state belongs.

These turn out to be su�cient in most cases, and determining these three characteristics

for both the Ising eigenvalues and the A
3

eigenvalues then allows us to identify the free

fermions in the A
3

model.

Determining the first property, the numerical value, is trivial, it is the very act of diagonal-

ising the Hamiltonian2 matrix. To determine the total momentum, we actually diagonalise

the following operator:

H = H + iSL + iSR (6.11)

Where S
(L)R is the (left) right shift operator along the chain. This operator has eigenvalues:

⇤H = E + i cos(p) (6.12)

Where p is the total momentum of the state. We can do this for both the Ising model and

the dilute A
3

model, and identify the actual eigenvalues as the real part of ⇤H , while we

have that cos(p) is the imaginary part, so that p is indeed uniquely defined on the interval

[0, ⇡] (as opposed to on [⇡/2,�⇡/2] had we chosen to diagonalise H + SL � SR).

Conformal Sectors Now the last identification, an eigenvalue’s conformal sector, is a bit

more tricky. As mentioned before, the Ising CFT has three primary fields in its Kac table:

the identity 1, the energy operator ✏, and a spin operator �. All states in the corresponding

theory are thus, through the operator-state correspondence, a certain descendant of one of

these operators. And since the CFT is connected to the finite, non-conformal theory by a

continuous scaling, we expect this identification to still be possible in the finite size Ising

model. This correspondence teaches us that any such descendant eigenstate will have an

extensive eigenvalue, plus some finite size corrections.

2We will actually work in the Hamiltonian limit of the transfer matrix, since the Hamiltonian operator
will generally be more sparse than the transfer matrix, which is useful for numerical investigation.
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We define a state | i on a chain of length L as:

| i =
X

s

 s |si , s = {s
1

, ..., sL} , si 2 {+1,�1} (6.13)

Its eigenvalue will generally be of the shape [5][36]

E = LE +
⇡c

6L
� 2⇡

L
�j +O(L�1) (6.14)

Where c = 1/2, E is the energy of the operator in the scaling limit, and �j is the conformal

dimension of the state | i. Each state is a descendant of one of the three primaries, so their

�j will di↵er an integer from either 0, 1, or 1

8

, corresponding to descendants of resp. 1, ✏,

or �. However, it turns out that these extra O(L�1) terms will generally grow as we get

deeper in the spectrum (larger �j), so accurately determining �j, and thus the conformal

sector, will become impossible there for both mathematical and numerical reasons.

We will therefore use another trick, based on the fact that descendants will inherit the

symmetry properties of their primaries. For a state | i 2 des(�) (i.e. a � descendant), its

components  s in definition (6.13) should have the property that they are antisymmetric

under a global spin flip s ! �s, e.g.  
+++�� = � ���++

, while the other descendants

are symmetric under this spin flip. If we thus have an eigenstate | i, and we see that its

components satisfy  s = � �s, then we know that it is a descendant of the primary �.

There are still two sectors left: des(1) and des(✏). Under the order-disorder duality of

the Ising model, the sign of a state’s energy is e↵ectively switched. Interpreting order as

fixed boundary conditions, and disorder as summing over them, motivates us to define a

disorder transformation D on a component as:

Ds1 s :  s1,s2,...,sL !  
0,s2,...,sL :=

1p
2
( 

+,s2,...,sL +  �,s2,...,sL) (6.15)

We can then look at how components transform under D. It turns out that in all cases

we checked, the components satisfy exact relations like  
00+++

= ± 
++���, that is, the

states are exactly symmetric or antisymmetric under this disorder transformation. States
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that are D-symmetric can be identified with descendants of the identity, while states that

are D-antisymmetric are descendants of ✏.

We now have a way to assign a conformal sector to each of the ‘brute force’ eigenvalues of

the Ising model. Since there can also be numerical errors or degeneracies in its free fermion

description, we also want to identify the three properties of each free fermion state. Again,

the first two are trivial (numerical value and momentum), but the conformal sector requires

some attention. It turns out that we can make the following identifications:

• The number of fermions is even in des(1) and des(✏), and odd in des(�).

• The number of fermions with positive momentum is even in des(1) and odd in des(✏).

This gives us a way to uniquely assign a free fermion state to a conformal sector.

Ok, we’re almost there now. Remember that we are making these identifications so that we

can link A
3

eigenvalues to Ising eigenvalues. We thus also need to also assign eigenvalues of

the A
3

model to a particular conformal sector (we already found their numerical value and

momentum earlier). Luckily, it can be done in a very similar manner. The key di↵erence

is the fact that this dilute A
3

model actually has three local state possibilities (once the

loops are oriented, each edge is oriented in either direction, or empty). We thus get states

of the form:

| i =
X

s

 s |si , s = {s
1

, ..., sL} , si 2 {+1,�1, 0} (6.16)

Since the unoccupied state 0 is invariant under global arrow-flip, we can still use that  s

is antisymmetric under s ! �s i↵ | i 2 des(�). The disorder operation now comes with

the complication that we already have a ‘neutral’ state 0. However, it turns out that to

identify the states, it is su�cient to look at the way the components without any minuses

transform under the same disorder that we defined before, e.g.  
00+++

= ± 
++000

. Again,

we assign states that are symmetric under this transformation to des(1), and states that

are antisymmetric to des(✏).

Summary For each eigenvalue in the Ising model, its free fermion formulation, and the

dilute A
3

model, we have now assigned a numerical value, a momentum, and a conformal
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sector. We could try to find further properties of these eigenstates, like for example which

exact descendant they are, but the three we have already identified turn out to su�ce. We

can fully identify a unique free fermion character to each of the eigenvalues of the dilute

A
3

model.

6.3 Next steps

In theory, we now have a description of the dilute A
3

model in terms of both the Bethe

Ansatz and free fermions, so we should be able so reach our original goal of associating free

fermion states to the E
8

particles, or at least the critical spectrum. However, the BAEs in

equation (6.1) are hard to solve, even numerically, and we were unable to generate enough

stable solutions to really make explicit connections. This is not to say it is impossible.

Equations like the ones in (6.1) can be solved with more advanced numerical techniques

and clever assumptions about the patterns of solutions on the complex plane. The authors

of [14] for example mention their numerical study of even the o↵-critical version of (6.1),

and they indeed find indication for the eight particles.

The next step is thus obvious: a proper numerical investigation of these Bethe equations.

Using the results from this thesis, these solutions could then shine light on the fermionic

nature of the E
8

particles. This last step is unfortunately out of my reach for now, but I

hope that somebody else will be inspired by the progress and finish this ambitious project.
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Conclusion

In theory, there is no di↵erence between theory and practice. But, in practice,

there is. - Jan L.A. van de Snepscheut

In this thesis, we followed a historic line of research that was inspired by a famous paper

by Alexander Zamolodchikov [37]. In his paper, Zamolodchikov studied the physics of the

Ising model under a magnetic perturbation, and found a number of conserved quantities

and excitations. We are now almost 40 years of research later, but nothing new has been

discovered about its physics. There are still eight particles and the conserved quantities

haven’t changed. This is partly due to the fact that the original paper already included

basically everything one might want to say about the system, but also due to the fact that

the further research has not really been motivated by the promise of new physics. Rather,

the fact that there seemed to be rich algebraic structures hidden in the physics motivated

people to study it, not to exploit these mathematical structures, but rather to appreciate

and enjoy them. Following this process of inquiry, we’ve seen many faces of a particular

object called E
8

. It is many things indeed. Its first appearance was as a Lie algebra: the

eight particles have masses that have their mutual ratios encoded in the Cartan matrix of

the Lie algebra E
8

. We’ve also seen the associated Lie group appear as the target space

manifold of an Ising (c = 1/2) conformal field theory (a diagonal E
8

coset WZW model).

At the same time, we’ve seen quantum field theories ((a�ne) E
8

Toda field theories) that

describe the Ising model where we only needed the discrete eight-dimensional E
8

lattice or

its Dynkin diagram. It is not clear which of these is most fundamental, and perhaps that

question doesn’t even mean anything, but we set out to gain more understanding of the
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role E
8

plays in the Ising model.

Our hope was to get closer to its actual appearance in the physics. We took the descriptions

of the eight particles in terms of the Bethe Ansatz, and tried to find a translation from

their confusing and opaque Bethe quantum numbers into clear and simple free fermion

momentum occupation quantum numbers, in the hope that such an identification would

shine light on what those particles actually are in terms of excitations on the lattice. We

practised such a translation first in the simpler case of the critical Ising model and the

Bethe Ansatz for the six-vertex model, and afterwards set out on the journey to generalise

this to the dilute A
3

-model that contains the eight particles in its 19-vertex Bethe Ansatz.

We ended up theoretically solving this problem by identifying the free fermion states of

the dilute A
3

-model as well as writing down its corresponding Bethe Ansatz. However,

numerically solving the Bethe Ansatz equation turned out to be beyond the scope of this

thesis.

The mystery thus persists, we don’t know why and how the most complex semisimple Lie

algebra we know appears in a perturbation of arguably the simplest nontrivial system in all

of physics. As inspiration, we might remember that there are more places in physics where

Lie algebraic symmetries lead to particles. Most famous are the Lie group symmetries

of the Standard Model that generate the force-carrying gauge-bosons. There, demanding

invariance under a symmetry transformation, fields transform under representations of the

corresponding group, and demanding the theory to be invariant forces you to add a new

field or particle. While this is somewhat reminiscent of the conserved charge bootstrap

procedure that predicted the eight particles, the latter doesn’t need an a priori specifica-

tion of the algebraic structure, so the way in which the algebra appears is fundamentally

very di↵erent. In fact, the same bootstrap calculation can be done by looking at reflections

in the Weyl group of E
8

, so it is not clear if we even need the full algebraic structure.

I don’t doubt that there will be further research on this topic. The Ising model is so

ubiquitous throughout the mathematical sciences, and E
8

is such a mythical object in

mathematics, that many more people will be gripped by its mysterious appearance. This

thesis will hopefully aid research into a better understanding of the nature of the particles

on the lattice, or inspire people to take a completely di↵erent approach altogether.
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A
Appendix

A.1 The Experiment

Even though the Ising model was of course introduced to describe a part of reality, we

have mostly been interested in the 1D-quantum and 2D-classical versions, which are quite

di�cult to realise in our notoriously 3-dimensional (quantum mechanical) universe. In

fact, the 1D quantum chain we have been looking at does rely on the three Pauli ma-

trices, corresponding to three spatial directions. This paradoxical dimensionality is why

Zamolodchikov’s prediction remained largely a mathematical exercise through the 90’s and

00’s.

This changed in 2010 when a group of experimentalists in Germany and the UK were

able to examine a system that shared some of the essential features of this 1D magneti-

cally perturbed Ising model [7]. They looked at the insulating quasi-1D Ising ferromagnet

CoNb
2

O
6

. They call this quasi-1D because one can grow long chains of this crystal in

which the Co2+ atoms will align along a zigzagging axis (see fig. A.1).

Figure A.1: Part of the CoNb
2

O
6

-chain, where the c-axis is defined to go along the chain.
Source: [7]
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There is, however, the question whether the individual chains in the 3D crystal will not

a↵ect each other too much to destroy the 1D characteristics. This matter is addressed

theoretically in [6], and it is shown that the e↵ect of nearby chains can to first order be

described by a longitudinal field gz on the 1D chain:

H = �K(j�
z
j�

z
j+1

+ hx�
x
j + gz�

z
j )

To verify that CoNb
2

O
6

crystals in the experiment indeed preserve these 1D dynamics,

the researchers first examined the crystal with hx = 0, and used that one dimensional spin

chains contain some unique dynamics. In the ferromagnetic phase, there are the two Z
2

ground states, and a kink is a local deformation of the chain that interpolates between the

two, schematically shown in figure A.2.

Figure A.2: A local spin-flip, caused by a neutron scattering, can spontaneously flip its
neighbors and propagate the new groundstate in both directions. Time goes down the
page. Source: [7]

Now the cost of such a kink propagating is actually zero, since at every moment in time,

the domain wall, which is the part that costs energy, is the same size1. This results in

a continuum spectrum when the crystal is examined by neutron spectroscopy. Note that

1There is a more subtle e↵ect going on among di↵erent chains that actually does suppress pairs of kinks
propagating far, since these large new domains also cost energy when next to a chain in a di↵erent ground
state. This leads to an e↵ect called kink confinement, and its precise character is later used to verify the
model.
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this is inherently a one dimensional e↵ect. In higher dimensions, surface area actually

scales with volume, and larger domains will cost more energy. Only in 1D we see a con-

stant surface area for a growing domain, and these kinks can propagate at no cost. When

going through the critical point by increasing the transverse magnetic field, we enter the

paramagnetic phase, where there are no longer two degenerate ground states, and a sharp

excitation peak is expected where a spin is flipped against the preferred direction of the

transverse field. The experimenters use exactly these properties to verify that the crystal

they investigate is indeed acting as a one-dimensional quantum Ising chain, and found

good indication that it did.

Now cooling the crystal too 40 mK and coming from low transverse field, deeply in its

ordered phase, hx can be tuned to approach the quantum phase transition. At this point,

it is precisely the longitudinal field induced by the inter-chain interaction that serves as

the magnetic perturbation that predicts the spectrum of eight particles.

Bombarding the crystal with incoming neutrons, what the experiment showed was that

as the transverse field approached the critical value, the ratio between the lightest two

excitations indeed approached the golden ratio, as predicted by Zamolodchikov nearly two

decades earlier (see figure A.3).

Figure A.3: As the magnetic field approaches the critical value of 5.5T, the ratio of the
first two masses approaches �. Source: [7]

A full plot of excitation intensities (fig. A.4) shows two clear peaks for the lightest particles,

but then evolves into a noisy plateau with little interesting detail.

This is due to the fact that the third particle weighs about 2m
1

, and all higher excita-
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tion peaks get overshadowed by the continuum of producing multiple, or combinations

of, lighter particles (see fig.A.5). This makes further identification of the eight predicted

particles impossible, but the experimenters make the claim that they have conclusively

identified the lightest two.

Figure A.4: Two spectra at di↵erent magnetic fields. Source: [7]

Figure A.5: (left) Relative contributions of the higher excitations to the spectrum, with
overlay of the 2m

1

continuum (dashed line).
(right) E↵ect on the critical spectrum of a longitudinal field: it introduces a gap, and
creates two distinct energy levels, and a continuum above them. Source: [7]

Addendum After writing this thesis, it was brought to my attention that a similar ex-

periment has been conducted in 2014, showing even more promising results [22]. Instead

of using neutron scattering, the authors investigated the CoNb
2

O
6

with terahertz spec-

troscopy, i.e. electromagnetic radiation. This technique o↵ers a much higher absorption
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resolution, and the authors find even stronger evidence that the material is adequately de-

scribed by 1D physics. Like [7], they do this by looking at bound states at zero transverse

magnetic field (hx = 0, so not in the vicinity of the critical point). Where [7] found five

peaks to verify the 1D model, [22] found nine, and even an extra peak just below the 2m
1

threshold. They attribute this extra peak to a bound state between two interacting chains.

However, in spite of the increased resolution, in the vicinity of the critical point, they still

only report on the lowest two E
8

states, the rest still hiding in the 2m
1

continuum. I’d like

to thank Neil J. Robinson for bringing this experiment to my attention.

A.2 Coxeter orbit code

Cart = [ [ 2 , �1, 0 , 0 , 0 , 0 , 0 , 0 ] , [�1 , 2 , �1, 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , �1, 2 , �1 ,0 , 0 , 0 , 0 ] , [ 0 , 0 , �1, 2 , �1, 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , �1, 2 , �1, 0 , �1] , [ 0 , 0 , 0 , 0 , �1, 2 , �1, 0 ] ,

[ 0 , 0 , 0 , 0 , 0 , �1, 2 , 0 ] , [ 0 , 0 , 0 , 0 , �1, 0 , 0 , 2 ] ]

de f r ( i , rootVec ) :

tempVec = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

f o r j in range ( l en ( rootVec ) ) :

i f rootVec [ j ] !=0 :

tempVec [ j ] += rootVec [ j ]

tempVec [ i ] �= rootVec [ j ] ⇤ Cart [ i ] [ j ]

rootVec = tempVec

re turn rootVec

de f coxEl ( rootVec ) :

r e turn r (6 , r (4 , r (2 , r (0 , r (7 , r (5 , r (3 , r (1 , rootVec ) ) ) ) ) ) ) )

#The vec to r to compute the o r b i t o f :
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orbitVec = [ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

f o r i in range ( 3 1 ) :

p r i n t [ orb i tVec [ 0 ] , orb i tVec [ 6 ] ,

orb i tVec [ 1 ] , orb i tVec [ 7 ] ,

orb i tVec [ 2 ] , orb i tVec [ 5 ] ,

orb i tVec [ 3 ] , orb i tVec [ 4 ] ]

orb i tVec = coxEl ( orb i tVec )

A.3 Commutator of diagonal transfer matrix and 1D

quantum Ising Hamiltonian

For the paper that these calculations are based on, we refer the reader to [35].

We want to look at [H,D
1

] where

(D
1

)µµ0 = exp
⇣ MX

i=1

J(µiµ
0
i + µi+1

µ0
i)
⌘

(A.1)

Hµµ0 =
NX

j=1

⇣
�µ1µ0

1
�µ2µ0

2
...�µj�µ0

j
...�µNµ0

N
+ Sµjµj+1

�µµ0

⌘
(A.2)

(A.3)

Letting these operators now work on the same spin chain of length N , we can look at their

commutator:

[H,D
1

] =
X

�

⇣
Hµ�(D1

)�µ0 � (D
1

)µ�H�µ0

⌘
(A.4)
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Evaluating both terms individually:

X

�

Hµ�(D1

)�µ0 =
X

�

 
NX

j=1

⇣
�µ1�1�µ2�2 ...�µj��j ...�µN�N + Sµjµj+1

�µ�

⌘
exp
� NX

i=1

J(�iµ
0
i + �i+1

µ0
i)
�
!

=
X

j

exp
⇣X

i

J(µiµ
0
i + µi+1

µ0
i)
⌘
exp
⇣
� 2J(µjµ

0
j + µjµ

0
j�1

)
⌘

(A.5)

+
X

j

exp
⇣X

i

J(µiµ
0
i + µi+1

µ0
i)
⌘
Sµjµj+1

(A.6)

=
X

j

exp
⇣X

i

J(µiµ
0
i + µi+1

µ0
i)
⌘ 

exp
⇣
� 2J(µjµ

0
j + µjµ

0
j�1

)
⌘
+ Sµjµj+1

!

(A.7)

X

�

(D
1

)µ�H�µ0 =
X

�

 
exp
� NX

i=1

J(µi�i + µi+1

�i)
� NX

j=1

⇣
��1µ0

1
��2µ0

2
...��j�µ0

j
...��Nµ0

N
+ S�j�j+1

��µ0

⌘!

=
X

j

exp
⇣X

i

J(µiµ
0
i + µi+1

µ0
i)
⌘
exp
⇣
� 2J(µjµ

0
j + µj+1

µ0
j)
⌘

(A.8)

+
X

j

exp
⇣X

i

J(µiµ
0
i + µi+1

µ0
i)
⌘
Sµ0

jµ
0
j+1

(A.9)

=
X

j

exp
⇣X

i

J(µiµ
0
i + µi+1

µ0
i)
⌘ 

exp
⇣
� 2J(µjµ

0
j + µj+1

µ0
j)
⌘
+ Sµ0

jµ
0
j+1

!

(A.10)

Assuming exp
⇣P

i J(µiµ
0
i+µi+1

µ0
i)
⌘
6= 0, demanding the full commutator be zero amounts

to demanding:

X

j

⇣
e�2Jµjµ

0
j(e�2Jµj+1µ

0
j � e�2Jµjµ

0
j�1) + S(µ0

jµ
0
j+1

� µjµj+1

)
⌘
= 0 (A.11)

Since we know that µiµ
0
j can only be +1 or -1, we can simplify this demand by defining p

and q by
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p+ q = e�2J (A.12)

p� q = e2J (A.13)

=) e�2Jµiµ
0
j = p+ q(µiµ

0
j) (A.14)

Where

p = cosh(�2J) (A.15)

q = sinh(�2J) (A.16)

Our demand then becomes:

=)
X

j

�
p+ q(µjµ

0
j)
��
p+ q(µj+1

µ0
j)� p� q(µjµj�1

)
�
= �S

X

j

(µ0
jµ

0
j+1

� µjµj+1

)

Assuming (in the general case)

X

j

(µ0
jµ

0
j+1

� µjµj+1

) 6= 0 :

We can conclude

(pq)

P
j(µj+1

µ0
j � µjµ

0
j�1

)
P

j(µ
0
jµ

0
j+1

� µjµj+1

)
+ q2

P
j(µjµ

0
j(µj+1

µ0
j � µjµ

0
j�1

))
P

j(µ
0
jµ

0
j+1

� µjµj+1

)
= �S (A.17)

Since in the numerator of the first term we may (because of periodicity) just as well relabel

the second sum by an index j̃ = j � 1, we see that the numerator sums to zero, and we

should only evaluate the / q2 fraction.
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�S = q2
P

j(µjµ
0
j(µj+1

µ0
j � µjµ

0
j�1

))
P

j(µ
0
jµ

0
j+1

� µjµj+1

)
(A.18)

= q2
P

j

�
µjµj+1

(µ0
j)

2 � µ0
jµ

0
j�1

(µj)2
�

P
j(µ

0
jµ

0
j+1

� µjµj+1

)
(A.19)

= q2
P

j

�
µjµj+1

� µ0
jµ

0
j�1

�
P

j(µ
0
jµ

0
j+1

� µjµj+1

)
(A.20)

= �q2
P

j

�
µjµj+1

� µ0
jµ

0
j�1

�
P

j(µjµj+1

� µ0
jµ

0
j+1

)
(A.21)

(A.22)

Where we can again relabel the second sum in the numerator by an index j̃ = j � 1 so

that the total fraction becomes one and we can immediately conclude that

[H,D
1

] = 0 for S = q2 = sinh2(�2J) = sinh2(2J)

The calculation for D
2

is fully analogous, and too similar to justify printing it here. It leads

to exactly the same constraint: S = q2, so both transfer matrices and the Hamiltonian can

be simultaneously diagonalised.

A.4 The diagonal Ising transfer matrix in fermion ba-

sis.

We start from the expression for the eigenvalues of the transfer matrix in Paulion-basis

(B.5 in [35]):

� h0|�i = 2�N/2
X

µ0

hµ0|
NY

j=1

AeB�
3
j�

3
j+1 |�i (A.23)

Where |�i is an eigenstate of the transfer matrix. We then first do the Jordan-Wigner

transformation to go from these Pauli operators (whose creation and annihilation operators

obey mixed commutation relations) to proper fermion operators:
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�1

j = 2c†jcj � 1 (A.24)

�3

j = (�1)
Pj�1

l=1 c†l cl(c†j + cj) (A.25)

�2

j = i�1

j�
3

j (A.26)

So that we can rewrite the exponent with:

�3

j�
3

j+1

= (�1)
Pj�1

l=1 c†l cl(c†j + cj)(�1)
Pj�1

l0=1
c†
l0cl0 (c†j+1

+ cj+1

) (A.27)

= (�1)2
Pj�1

l=1 c†l cl(c†j + cj)(�1)c
†
jcj(c†j+1

+ cj+1

) (A.28)

= (c†j � cj)(c
†
j+1

+ cj+1

) (A.29)

Going back to the original expression, we see that we should evaluate the sum over j of

this operator. We can do this by Fourier transforming the fermion operators:

c†j =
1p
N

X

k

e�ikjc†k (A.30)

cj =
1p
N

X

k

eikjck (A.31)

Where k ranges in (�⇡, ⇡], and goes in steps of 2⇡/N . We will now evaluate the full
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operator term by term:

X

j

c†jc
†
j+1

=
X

j

1

N

X

k,l

c†kc
†
l e

�(k+l)je�il (A.32)

=
1

N

X

k,l

c†kc
†
l (N�k,�l)e

�il (A.33)

=
1

2
(
X

k

c†kc
†
�ke

ik +
X

l

c†�lc
†
l e

�il) (A.34)

= �i
X

k

c†�kc
†
k sin k (A.35)

X

j

c†jcj+1

=
X

j

1

N

X

k,l

c†kc
†
l e

�(k�l)jeil (A.36)

=
1

N

X

k,l

c†kc
†
l (N�k,l)e

il (A.37)

=
X

k

c†kcke
ik (A.38)

And we now note that the other two terms are just the Hermitian conjugates of these,

leading to the full expression:

�3

j�
3

j+1

=
X

k

�i sin k(c�kck + c†�kc
†
k) + c†kcke

ik � ckc
†
ke

�ik (A.39)

=
X

k

2 cos k(c†kck �
1

2
) + i sin k(c†kc

†
�k + ckc�k) (A.40)

Where we’ve used that an anti-symmetric sum over k of sin(k) equals zero, and cancelled

the oddness in k of sin(k) against the anticommutation of fermion operators. Since the

summand is even in k, it is now tempting to write the full sum as twice the sum over

k � 0. But recall that the k-interval is actually only almost antisymmetric, in the sense

that there are two k’s that don’t share an absolute value with another k in the sum: 0

and ⇡ (note that this does not mess up our earlier argument based on the antisymmetry

of the k-interval, since sin (0) = sin (⇡) = 0). When doubling the sum, these two values for

k should not be counted twice, and have to be treated separately, leading to:
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�3

j�
3

j+1

=

2(c†
0

c
0

� 1

2
)� 2(c†⇡c⇡ �

1

2
) + 2

X

0<k<⇡

2 cos k(c†kck �
1

2
) + i sin k(c†kc

†
�k + ckc�k) (A.41)

We thus get that we can rewrite the eigenvalues from position basis into momentum basis

as:

� h0|�i = 2�N/2
X

µ0

hµ0|
NY

j=1

AeB�
3
j�

3
j+1 |�i (A.42)

= h0|Ae2 ˜B(c†0c0� 1
2 )Ae�2

˜B(c†⇡c⇡� 1
2 )
Y

0<q<⇡

A2e2
˜B(⌧3q cos (q)+⌧1q sin (q)) |�i (A.43)

Where we defined as in [35]:

⌧ 1q = i(c†qc
†
�q + cqc�q) (A.44)

⌧ 3q = c†qcq + c†�qc�q � 1 (A.45)

A = 2
p

cosh(J
1

)2 cosh(J
2

)2 � sinh(J
1

)2 sinh(J
2

)2 (A.46)

B = acosh(2 cosh(J
1

) cosh(J
2

)/A) (A.47)
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A.5 Wol↵-Zittartz eigenvalues

Eigenvalues and their momentum occupation, L=3, J
1

= J
2

= 1

Eigenvalue q = 0 ⇡
3

2⇡
3

⇡

22.1277 1 0

403.877 1 2

6.85568 0 0

403.824 0 1

7.25372 - 12.5638i (-)1 1

7.25372 + 12.5638i 1 1

0 1 (-)1

0 1 1
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Eigenvalues and their momentum occupation, L=4, J
1

= J
2

= 1

Eigenvalue q = 0 ⇡
4

⇡
2

3⇡
4

⇡

2985.13 2 2

2985.1 1 2 0

189.173 2 0

109.16 + 109.16i 0 1 0

109.16 - 109.16i 0 (-)1 0

105.016 0 0 1

74.4109i 1 1

-74.4109i (-)1 (-)1

52.6165 + 52.6165i 1 (-)1

52.6165 - 52.6165i 1 1

29.2694 0 2

1.85486 0 0

0 0 2 1

0 0 0 1

0 1 (-)1 1

0 1 1 1

A.6 Derivation of the twisted Bethe equations

We start with the relation that defines our Yang-Baxter algebra:

110



APPENDIX A. APPENDIX

R
12

(�� µ)T
1

(�)T
2

(µ) = T
2

(µ)T
1

(�)R
12

(�� µ) (A.48)

We have

T̃ (�) =

0

BB@
Ã(�) B̃(�)

C̃(�) D̃(�)

1

CCA (A.49)

And

T̃
1

(�) = T̃ (�)⌦ 1A2 (A.50)

T̃
2

(�) = 1A1 ⌦ T̃ (�) (A.51)

We can now fully specify our Yang-Baxter algebra by choosing our R-matrix to be:

R(�) =

0

BBBBBBBBBB@

a(�) 0 0 0

0 b(�) c(�) 0

0 c(�) b(�) 0

0 0 0 a(�)

1

CCCCCCCCCCA

(A.52)

After which we can just write out the relation (A.48). On the l.h.s. we get:

R
12

(�� µ)T̃
1

(�)T̃
2

(µ) =

 a(��µ) ˜A(�) ˜A(µ) a(��µ) ˜A(�) ˜B(µ)

c(��µ)C(�) ˜A(µ)+b(��µ) ˜A(�)C(µ) c(��µ) ˜C(�) ˜B(µ)+b(��µ) ˜A(�) ˜D(µ)

b(��µ) ˜C(�) ˜A(µ)+c(��µ) ˜A(�) ˜C(µ) b(��µ) ˜C(�) ˜B(µ)+c(��µ) ˜A(�) ˜D(µ)

a(��µ) ˜C(�) ˜C(µ) a(��µ) ˜C(�) ˜D(µ)

a(��µ) ˜B(�) ˜A(µ) a(��µ) ˜B(�) ˜B(µ)

b(��µ) ˜B(�) ˜C(µ)+c(��µ) ˜D(�) ˜A(µ) c(��µ) ˜D(�) ˜B(µ)+b(��µ) ˜B(�) ˜D(µ)

c(��µ) ˜B(�) ˜C(µ)+b(��µ) ˜A(µ) ˜D(�) b(��µ) ˜D(�) ˜B(µ)+c(��µ) ˜B(�) ˜D(µ)

a(��µ) ˜D(�) ˜C(µ) a(��µ) ˜D(�) ˜D(µ)

!
(A.53)

While the r.h.s. is:
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T̃
2

(µ)T̃
1

(�)R
12

(�� µ) =

 a(��µ) ˜A(µ) ˜A(�) b(��µ) ˜B(µ) ˜A(�)+c(��µ) ˜A(µ) ˜B(�)

a(��µ) ˜C(µ) ˜A(�) c(��µ) ˜C(µ) ˜B(�)+b(��µ) ˜D(µ) ˜A(�)

a(��µ) ˜A(µ) ˜C(�) b(��µ) ˜B(µ) ˜C(�)+c(��µ) ˜A(µ) ˜D(�)

a(��µ) ˜C(µ) ˜C(�) c(��µ) ˜C(µ) ˜D(�)+b(��µ) ˜D(µ) ˜C(�)

b(��µ) ˜A(µ) ˜B(�)+c(��µ) ˜B(µ) ˜A(�) a(��µ) ˜B(µ) ˜B(�)

b(��µ) ˜C(µ) ˜B(�)+c(��µ) ˜D(µ) ˜A(�) a(��µ) ˜D(µ) ˜B(�)

c(��µ) ˜B(µ) ˜C(�)+b(��µ) ˜A(µ) ˜D(�) a(��µ) ˜B(µ) ˜D(�)

b(��µ) ˜C(µ) ˜D(�)+c(��µ) ˜D(µ) ˜C(�) a(��µ) ˜D(µ) ˜D(�)

!
(A.54)

From this we see that (A.48) actually encodes a set of commutation relations for our

operators.

Our goal is to find out under what circumstances our B̃-excited states are still eigenvectors

of our transfer matrix ⌧(�) = Ã(�) + D̃(�). We write

Ã(�)
MY

j=1

B̃(�j) |0i = ⇤
˜A

MY

j=1

B̃(�j) |0i+ unwanted terms (A.55)

D̃(�)
MY

j=1

B̃(�j) |0i = ⇤
˜D

MY

j=1

B̃(�j) |0i+ unwanted terms (A.56)

The commutations relations that follow from (A.53) and (A.54) can now be used to com-

mute the operators Ã and D̃ trough all the B̃s, so that we can evaluate their action. We

use the following commutation relations:

[B̃(�), B̃(µ)] = 0 (A.57)

Ã(�)B̃(µ) =
a(µ� �)

b(µ� �)
B̃(µ)Ã(�)� c(µ� �)

b(µ� �)
B̃(�)Ã(µ) (A.58)

D̃(�)B̃(µ) =
a(�� µ)

b(�� µ)
B̃(µ)D̃(�)� c(�� µ)

b(�� µ)
B̃(�)D̃(µ) (A.59)

The first one just means that the order of B̃-excitations in equations (A.55) and (A.56)

doesn’t matter, while the bottom ones allow us to actually commute the operators through.

Let’s focus on computing (A.55) first. Every time we push the Ã(�) operator through a

B̃(�i), we get get two terms, so that once we’ve brought Ã(�) fully to the vacuum state,

we end up with 2M terms. In one of these terms, we just picked up a factor a(�i��)
b(�i��) for each
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commutation, leaving the spectral parameters alone, making the whole state an eigenstate

of Ã(�). We will call this one term the wanted term, and the other ones the unwanted

terms U :

Ã(�)
MY

j=1

B̃(�j) |0i =
 
e✓a(�)L

MY

i

a(�i � �)

b(�i � �)

!
MY

j=1

B̃(�j) |0i+ U
˜A (A.60)

And similarly for the D̃-operator:

D̃(�)
MY

j=1

B̃(�j) |0i =
 
e�✓b(�)L

MY

i

a(�� �i)

b(�� �i)

!
MY

j=1

B̃(�j) |0i+ U
˜D (A.61)

From this, we can immediately conclude that the eigenvalues of the transfer matrix will

turn out to be:

⇤⌧ (�|{�j}M) = e✓a(�)L
MY

i

a(�i � �)

b(�i � �)
+ e�✓b(�)L

MY

i

a(�� �i)

b(�� �i)
(A.62)

However, this is only true if the unwanted terms of Ã(�) and D̃(�) will indeed cancel. The

constraints on the �i that make this happen determine the spectrum of the transfer matrix

and are known as the Bethe Ansatz equations (BAEs).

Every term of the remaining 2M � 1 terms will have the Ã operator exchange its spectral

parameter with one of the �i in the B̃ product. The sum of these unwanted terms takes

the general form:

U
˜A =

MX

i=1

 
MY

j 6=i

B̃(�j)

!
↵iÃ(�i) |0i (A.63)

=
MX

i=1

↵ie
✓a(�i)

L

 
MY

j 6=i

B̃(�j)

!
|0i (A.64)
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And for the D̃-operator:

U
˜D =

MX

i=1

 
MY

j 6=i

B̃(�j)

!
�iD̃(�i) |0i (A.65)

=
MX

i=1

�ie
�✓b(�i)L

 
MY

j 6=i

B̃(�j)

!
|0i (A.66)

The key now is to figure out what the coe�cients ↵i and �i are that capture the factor

picked up by the total commutation, and all exchanges of the spectral parameter. A smart

and simple trick can help us. Recall that one of the commutation relations told us that

[B(�), B(µ)] = 0. We can thus rewrite the excited state as:

MY

j=1

B̃(�j) |0i = B̃(�i)
MY

j 6=i

B̃(�j) |0i (A.67)

We now see that the total e↵ect of ending up with an Ã(�i) |0i term must be the same as

when the spectral parameter exchange happens directly and only with B̃(�i). We can thus

write:

↵i = �c(�i � �)

b(�i � �)

MY

k 6=i

a(�k � �i)

b(�k � �i)
(A.68)

�i = �c(�� �i)

b(�� �i)

MY

k 6=i

a(�i � �k)

b(�i � �k)
(A.69)

Now we need to use some symmetry properties of our functions. As will be shown in the

main text of this thesis, we will choose our weights such that c(���i)
b(���i) = � c(�i��)

b(�i��) , so that

the demand that U
˜A + U

˜D = 0 term-by-term amounts to:

↵ie
✓a(�i)

L = ��ie�✓b(�i)L (A.70)

=) e2✓
⇣a(�i)
b(�i)

⌘L
=

MY

k 6=i

a(�i � �k)b(�k � �i)

b(�i � �k)a(�k � �i)
(A.71)
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Where we have finally arrived at our twisted Bethe equations as the conditions that the

transfer matrix has eigenvalues of the form (A.62).
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