Higher-order interactions in single-cell expression data
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Non-parametric methods hide dynamics

« Binary transcription factors A and B
« Affect C independently: C=A+B
« Affect D as bound complex: D = A x B
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« Do not differentiate between dynamics!
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Model-free Interactions: Intuition

Let's take a step back: What do we actually mean by interaction?
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o The effect I; of gene X; € X on an outcome Y: 1-pt interaction
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+ Two genes X; and X interact when expression of X; changes the effect of X; on Y:
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A third gene Xy can modulate this interaction, which we call a 3-point interaction:
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Model-free Interactions: Definition

« Interactions are derivatives of an outcome: Ij; =

8Xj8Xi )XZO

« Most general outcome: log p(X)
« For binary genes, we can calculate this !!
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o Symmetric: I = Ij.

« Conditionally independent genes do not interact: X; Il Xj | X = Ijj = 0.

« If X =0, log-odds ratio.

« Model-independent - can be directly estimated from expression data.

« It can be generalised to an n-point interaction by taking n derivatives of log p(X).

'S. Beentjes & A. Khamseh, Phys. Rev. E 102, 053314



What are genetic higher-order interactions?
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- Innate tendency to be expressed.

e 2-ptl =

- How XJ changes Xji's tendency to be expressed

- Isolated gene regulation
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- 'Combinatorial' gene regulation

- Expression ‘epistasis’ (Saswati Saha this morning!)



Model-free Interactions: in practice

« The TF-models from before:

Gene dynamics Causal graph Correlation Mutual Information Interaction
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Multiplicative:
D=AxB

« A 2-point interaction for independent transcription factors.

o A 3-point interaction for bound complex of transcription factors.



Interactions are something new

Correlation  is not Causation
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Results:

we find hundreds of interactions
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Results: 1-point interactions

Q: Are 1-point interactions an indication of housekeeping genes?

Log 2-fold enrichment in HK genes of top N genes
Sorted by self-coupling v. expression
30 — Neurons
— niPcs

— Astrocytes.
— Neuroblasts

+ Yes! Even more so than
RPN expression.



Results: Connected triplets

Enrichment in TFs of collider parents vs. children
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Parents are more likely to be transcription

Log 2-fold enrichment

factors than children.
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Enrichment in TFs of up- vs. downstream genes in chains
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Summary

» Higher-order interactions reveal hidden — QP Qe (R p) (=0
e ®

dynamics

Number of each kind of interaction

« We find hundreds of higher order interactions in
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« They contain biological information about the B -

proteins
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A look ahead

How to validate 2-point interactions?

» Can we integrate our predictions with CHIP-seq data?

Differential expression — differential regulation.

» Can we predict novel interactions?
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