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1 Motivation

Molecular cell biology is often understood in terms of pathways of causal interactions between

molecules. These networks guide our understanding of biological processes, but identifying

these causal effects from observational data is non-trivial. Existing methods suffer from model-

misspecification, ignoring higher-order interactions and dependent variables.

We propose a new way to reconstruct genetic networks that suffers from none of these issues,

and generalises to interactions that involve more than 2 genes, potentially revealing higher-order,

combinatorial gene regulation. In four different cell types, we find hundreds of 3-point interac-

tions.

2 Traditional methods hide dynamics

Non-parametric associations

Consider two binary transcription factorsA andB separately affecting a target geneC , and a gene
D that is only affected by a bound complex of A and B. Estimating the causal graph, correlation
structure, and mutual information gives the networks below:
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That is, none of these methods are able to distinguish between these biologically different sce-

narios - they hide the underlying dynamics.

Model bias

By fitting a model, the dynamics become explicit,

but at a high cost. Consider fitting a model of the

form:

ŷ = x1 + x2 + αxn
1x2

to data generated as

y = x1 + x2 + x1x2

where X1, X2 ∼ Unif(−1, 1).

The best fits across multiple simulations are shown for 1 ≤ n ≤ 5. It can be seen that all models
except the ground truth (n = 1) are biased, and even powers find no interaction at all.
Even worse: If there is a hidden X3 such that

y = x1 + x2 + αx1x2 + βx1x2x3
= x1 + x2 + (α + βx3)x1x2

Then the 3-point interaction starts mixing with the 2-point.

3 Model-free interactions

The effect Ii of a gene Xi ∈ X on an outcome Y is the extent to which Y changes when the

expression of Xi changes, all other genes (X ) being fixed:

Ii = ∂Y

∂Xi

∣∣∣
X=0

We say that two genesXi andXj interactwhen the level ofXj changes the effect ofXi on Y :

Iij = ∂Ii

∂Xj

∣∣∣
X=0

= ∂2Y
∂Xj∂Xi

∣∣∣
X=0

Similarly, a third geneXk might modulate this interaction, which results in a 3-point interaction:

Iijk =
∂Iij

∂Xk

∣∣∣
X=0

= ∂3Y
∂Xk∂Xj∂Xi

∣∣∣
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If we take the most general outcome Y possible - the (log of) the joint distribution of all genes
X - we get the definition of interaction from [1]:

Definition (Pairwise interaction between binary genes)

A pair of binary genes {Xi, Xj} ∈ X has a pairwise interaction Iij where

Iij = log
p
(
Xi = 1, Xj = 1 | X = 0

)
p
(
Xi = 1, Xj = 0 | X = 0

)p
(
Xi = 0, Xj = 0 | X = 0

)
p
(
Xi = 0, Xj = 1 | X = 0

)
This definition has the following properties:

It is symmetric: Iij = Iji.

Conditionally independent genes do not interact: Xi ⊥⊥ Xj | X =⇒ Iij = 0.

If X = ∅, the interaction reduces to a log-odds ratio.

It is the double derivative of the joint self-information: Iij = ∂2
∂Xi∂Xj

log p(X)
∣∣∣
X=0

, which

describes equilibrium interactions in statistical physics.

It is model-independent and can be directly estimated from expression data.

It can be naturally extended to n-point interactions by taking n'th derivatives of log p(X).

4 Interactions reveal underlying dynamics

With this definition in hand, we estimate the

interaction on the systems from section 2.

We now find we are able to distinguish the

two systems - D being affected by a bound

complex ofAand B lead to a 3-point interaction.

This leads us to conclude:
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5 Mouse brain cells contain hundreds of 3-point interactions

We consider interactions in a data set of 1.3M embryonic (E18.5) mouse brain cells [2]. From

each of four cell types, we construct two biological replicates of 10k cells. To specifically focus

on collider triplets, we also estimate the causal graph in each cell type.
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Below we show the number of 1-, 2-, and 3-point interactions that are significant in both repli-

cates. Also shown is the number of triplets with an additive or multiplicative interaction pattern

in each replicate separately.

6 Conclusion

Model-free interactions can reveal underlying dynamics in observational data where other

methods cannot.

We claim the existence of these replicated 3-point interactions, and propose that they

reflect higher-order gene regulation.

We will validate this biologically and investigate the role of higher-order interactions further in

future research.
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