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Outline

• Goal: quantify higher-order structure.
• Information theory: Entropy/MI
• Partial information decomposition
• Statistical physics: Interactions in energy-based models
• Are these related?

• Today:
• Relating interactions in energy-based models to information theory.
• Some ways in which synergy is better captured by these interactions than by

entropy-based measures.
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The Ising model: a physical perspective

• A model of interacting spins σ on a lattice, in a magnetic field h.
• σ = {σ1, . . . , σN}, σi ∈ {0, 1}.
• The energy of a configuration—at equilibrium—is given by:

E(σ) = −
∑
i,j

Jijσiσj −
∑

i
hiσi

• High energy: ↑ ↓ ↑ ↓
• Low energy: ↑ ↑ ↑ ↑
• The probability of a configuration is given by:

p(σ) = 1
Z exp(−βE(σ))

• Jij is called the coupling, or interaction, between spins i and j.
• Description of magnets, neurons, bird flocks, social dynamics, etc. 2



The Ising model: a statistical perspective (Jaynes ’57)

• Observe binary variables σ = {σ1, . . . , σN}.
• Write down a probability distribution p(σ).
• Fewest assumptions: maximum entropy distribution

H(p) = −
∑
σ

p(σ) log p(σ)

• Subject to constraints
∑

σ p(σ) = 1 =⇒ p(σ) = 2−N

• Add more constraints:∑
σ

p(σ)σi = µi,
∑
σ

p(σ)σiσj = µij

• =⇒ p(σ) = 1
Z exp(−

∑
i,j Jijσiσj −

∑
i hiσi)

• Ising model!
• Interactions and field fixed by observed moments. 3



Higher-order interactions

• What if you constrain the higher-order moments?
• MaxEnt solution:

E(σ) = −
∑

i
hiσi −

∑
i,j

Jijσiσj −
∑
i,j,k

Jijkσiσjσk − . . .

• An Ising model with higher-order interactions.
• Predicting properties of p(σ) is the forward Ising problem.
• Fitting to data—the inverse Ising problem—is hard.

• MLE inference (exponential, pairwise only?)
• Pseudolikelihood (polynomial, approximate but consistent, pairwise only?)
• Restricted Boltzmann machines (approximate, unstable)
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Model-free interactions

• What do we really mean when we say interaction? (Beentjes & Khamseh, 2020)

• A change in tendency to be on/off when another variable is on/off.

Tendency to be on, or 1-point interaction:

Ii =
∂ log p(X)

∂Xi

∣∣∣
X=0

X = X \ {Xi}

2-point interaction:

Iij =
∂Ii
∂Xj

∣∣∣
X=0

=
∂2 log p(X)

∂Xj∂Xi

∣∣∣
X=0

X = X \ {Xi,Xj}
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Model-free interactions

• A change in 2-point interaction is a 3-point interaction:

Iijk =
∂Iij
∂Xk

∣∣∣
X=0

=
∂3 log p(X)

∂Xk∂Xj∂Xi

∣∣∣
X=0

X = X \ {Xi,Xj,Xk}

• And so on.
• When the Xi are binary, the derivatives are just differences:

Ii =
∂ log p(X)

∂Xi

∣∣∣
X=0

= log p(Xi = 1 | X = 0)− log p(Xi = 0 | X = 0)

= log
p(Xi = 1 | X = 0)
p(Xi = 0 | X = 0)
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Model-free interactions

• Notation pabc = p(Xi = a,Xj = b,Xk = c | X = 0)
• 1-point interactions:

Ii =
∂ log p(X)

∂Xi

∣∣∣
X=0

= log
p1
p0

2-point:

Iij =
∂2 log p(X)

∂Xj∂Xi

∣∣∣
X=0

= log
p11p00
p01p10

3-point:

Iijk =
∂3 log p(X)

∂Xk∂Xj∂Xi

∣∣∣
X=0

= log
p111p100p010p001
p000p011p101p110

• Model-free estimator: sample means!
• Symmetric in terms of the variables: IS = Iπ(S)
• Conditionally independent variables do not interact: Xi⊥⊥ Xj | X =⇒ Iij = 0 7



Model-free interactions solve the inverse Ising problem!

E(X) = −
∑

i
hiXi −

∑
i,j

JijXiXj −
∑
i,j,k

JijkXiXjXk − . . .

Iijk =
∂3 log p(X)

∂Xk∂Xj∂Xi

∣∣∣
X=0

= − ∂3E(X)

∂Xk∂Xj∂Xi

∣∣∣
X=0

= Jijk

= log
p111p100p010p001
p000p011p101p110

≈ log
n̂111n̂100n̂010n̂001
n̂000n̂011n̂101n̂110

• n̂abc is the number of samples that look like (0, . . . , 0, a, b, c, 0, . . . , 0)
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Model-free interactions

• Surprisal of a state X: − log p(X)

• Interactions are sums of surprisals:

Ii = log
p1
p0

= log p1 − log p0

Iij = log
p11p00
p01p10

= log p11 + log p11 − log p01 − log p10

Iijk = log
p111p100p010p001
p000p011p101p110

= . . .

• What determines the alternating signs? (Even/odd)
• Similar to mutual information
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Mutual information

• Higher-order mutual information:

MI(X,Y) = H(X)− H(X | Y)

= H(X) + H(Y)− H(X,Y)

MI(X,Y,Z) = MI(X,Y)− MI(X,Y | Z)
= H(X) + H(Y) + H(Z)− H(X,Y)− H(X,Z)− H(Y,Z) + H(X,Y,Z)

• Sign determined by even/odd number of variables
• Higher-order structure is captured by Möbius inversion
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Möbius function

• Subsets form a lattice under inclusion:
• S ≤ T ⇐⇒ S ⊆ T
• Capture relationships in poset P:

Mobius function µP : P × P → R

µP(x, y) =


1 if x = y
−

∑
z:x≤z<y

µP(x, z) if x < y

0 otherwise

{X,Y,Z} = 1̂

{X,Y} {X,Z}

∅ = 0̂

{Y,Z}

{X} {Y} {Z}
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Möbius inversion

Definition: Möbius inversion over a poset, Rota (1964)
Let P be a poset (S,≤), let µP : P × P → R be the Möbius function, and let
g : P → R be a function on P. Then, the function

f(y) =
∑
x≤y

µP(x, y)g(x)

is called the Möbius inversion of g on P. Furthermore, this can be inverted:

f(y) =
∑
x≤y

µP(x, y)g(x) ⇐⇒ g(y) =
∑
x≤y

f(x)

• On Boolean algebra (hypercube): µ(x, y) = (−1)|x|−|y|

=⇒ Möbius inversions on Boolean algebras are sign-alternating sums.
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Möbius inversion

• Mutual information is the Möbius inversion of marginal entropy:

MI(τ) = (−1)|τ |−1
∑
η≤τ

µP(η, τ)H(η)

• Pointwise mutual information is the Möbius inversion of marginal surprisal:

pmi(τ) = (−1)|τ |−1
∑
η≤τ

µP(η, τ) log p(η)

• Model-free interactions are the Möbius inversion of surprisal:

I(τ ;T) =
∑
η≤τ

(−1)|η|−|τ | log p(η = 1,T \ η = 0)
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Dual quantities

• If P = (S,≤) is a lattice, then Pop = (S,�)

(where a � b ⇐⇒ a ≥ b) is a lattice.
• What is dual mutual information

MI∗(τ) =
∑

η⪯τ (−1)|η|+1H(η)?
• Dual MI of a single variable X:

MI∗(X) = MI(X,Y,Z)− MI(Y,Z)
= MI(Y,Z | X) = ∆X

• Conditional/differential mutual information.
• MI∗(X,Y) = H(X,Y,Z)− H(X,Y) = H(X | Y,Z)
• In general context T : MI∗(τ) = MI(T \ τ | τ)

{X,Y,Z} = 1̂

{X,Y} {X,Z}

∅ = 0̂

{Y,Z}

{X} {Y} {Z}
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Dual quantities

• Dual interactions I∗(τ ;T) =
∑

η⪯τ (−1)|η|−|τ | log p(η = 1,T \ η = 0)
• Dual interaction of a single variable X in a system with 3 variables:

I∗(X; {X,Y,Z}) = I(X,Y,Z) + I(Y,Z)

= log
p111p100
p110p101

• This is I(Y,Z) |X=1.
• Dual interactions are interactions in a context of 1s:
• I∗(τ ;T) = I(T \ τ) |τ=1

• Outeractions
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Summary

• Mutual information is the Möbius inversion of marginal entropy.
• Pointwise mutual information is the Möbius inversion of marginal surprisal.
• Model-free interactions are the Möbius inversion of surprisal.
• Dual mutual information is a generalisation of conditional entropy/differential

mutual information.
• Dual interactions are interactions in a context of 1s.
• NB: These all imply an intuitive inverse relation:

f(y) =
∑
x≤y

µP(x, y)g(x) ⇐⇒ g(y) =
∑
x≤y

f(x)
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Summary

• Define: evalT : log p(R = r) 7→ log p(R = 1,T \ R = 0)
• Then:

MI∗(R) = MI(T \ R | R) H(R) MI(R)

pmi∗(R = r) log p(R = r) pmi(R = r)

I∗(R;T) log p(R = 1;T = 0) I(R;T)

MP

E E

MP

MP

evalT evalT

MPop

MPop

MPop

E

evalT
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Results: Synergy in logic gates

• What does a 3-pt interaction correspond to?

IABC = log
p111p100p010p001
p000p011p101p110

• Maximally positive =⇒ only terms in numerator are > 0.
A B C
0 0 1
0 1 0
1 0 0
1 1 1

• XNOR gate!
• (XOR is maximally negative)
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Results: Synergy in logic gates

• Let p(allowed state) = p and
p(forbidden state) = ϵ.

• Let I = 4 log p
ϵ

• Interactions have higher resolution
than MI.

• AND∼NOR and OR∼NAND.
• Def. JA = IABC − IBC

• JA has perfect resolution.
• JXNOR

A > JNOR
A > JAND

A .
• Ordered by synergistic content.
• (holds for even higher-orders as well)

G IABC MIABC JA

XNOR I −1 3
2I

XOR −I −1 −3
2I

AND 1
2I −0.189 1

2I
OR −1

2I −0.189 −I
NAND −1

2I −0.189 −1
2I

NOR 1
2I −0.189 I
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Results: Causal dynamicsVersion April 6, 2023 submitted to Entropy 18 of 27
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Figure 4. Different causal dynamics lead to different association metrics. Green edges denote positive
values, red edges denote negative values, circles denote a 3-point quantity, and dashed lines show
edges that show marginal significance, depending on σ2. Correlations and mutual information
cannot distinguish between most dynamics, and while partial correlation can, for certain noise levels,
identify the correct pairwise relationships, it falls short of distinguishing additive from multiplicative
dynamics. Only MFIs distinguish between all 6 scenarios, and reveal the combinatorial effect of the
multiplicative dynamics as a 3-point interaction. See appendix A.3 for the simulation parameters and
raw numbers. This figure is reproduced with permission from the author of [47].

4.3. Higher-order categorical interactions distinguish dy- and triadic interactions 323

That the interactions have such resolving power over distributions of binary variables 324

is perhaps not so surprising in light of the universality of RBMs with respect to this class of 325

distributions. More surprisingly, their resolving power extends to the case of categorical 326

variables. In [48], the authors introduce two distributions, the dy- and triadic distribu- 327

tions, that are indistinguishable by almost all commonly used information measures (i.e. 328

Shannon-, Renyi(2)-, residual-, and Tsallis entropy, co-information, total correlation, CAEKL 329

mutual information, interaction information, Wyner-, exact-, functional-, and MSS common 330

information, perplexity, disequilibrium, and the LMRP- and TSE complexity). 331

332

The two distributions are defined on 3 variables, each taking a value in a 4-letter 333

alphabet {0, 1, 2, 3}. The joint probabilities are summarised in Table 4. To construct the 334

distributions, each category is represented as a binary string ({0, 1, 2, 3} → {00, 01, 10, 11}), 335

leading to new variables {X0, X1, Y0, Y1, Z0, Z1}. The dyadic distribution is constructed 336

by linking these new variables with pairwise rules: X0 = Y1, Y0 = Z1, Z0 = X1, while the 337

triadic distribution is constructed with rules involving triplets: X0 + Y0 + Z0 = 0 mod 2, 338

and X1 = Y1 = Z1. The resulting binary strings are then reinterpreted as categorical 339

variables to produce Table 4. 340
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Results: Dy- and Triadic distribution

• 6 variables: (X0,X1,Y0,Y1,Z0,Z1)
• Dyadic: X0 = Y1,Y0 = Z1,Z0 = X1

• Triadic: X0 + Y0 + Z0 = 0 mod 2
and X1 = Y1 = Z1

• Variables combined to form categorical
variables X, Y, Z.

• (X0,X1) = (1, 1) =⇒ X = 3
• Indistinguishable by almost all information

measures. (James & Crutchfield, 2017)

• PID: has to identify in- and output variables.
• Symmetrised categorical interactions: I

• Dyadic: IXYZ = log 1 = 0
• Triadic: IXYZ = 64 log ϵ

p

Dyadic Triadic

X Y Z P(s) X Y Z P(s)

0 0 0 p 0 0 0 p
0 2 1 p 1 1 1 p
1 0 2 p 0 2 2 p
1 2 3 p 1 3 3 p
2 1 0 p 2 0 2 p
2 3 1 p 3 1 3 p
3 1 2 p 2 2 0 p
3 3 3 p 3 3 1 p

else ϵ else ϵ
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Teaser: model-free interactions on real data

• Samples that look like (0, . . . , 0, a, b, c, 0, . . . , 0) can be rare.
• Estimation becomes tractable using Markov blankets.
• In my thesis, I calculated MFIs in gene expression data.
• 1000 genes, 20k cells
• Interactions at up to seventh order.
• These revealed types of neurons not found in embryonic mice before.
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Conclusion

• Entropy-based information measures cannot distinguish all causal dynamics.
• Ising-like interactions can offer higher resolution.
• Uniquely identify causal dynamics & logic gates.
• The different notions of higher-order structure are all based on Möbius

inversions:
• (Pointwise) mutual information, Ising interactions are inversions on Boolean

algebra
• All have meaningful duals.
• Other lattices:
• categorical Ising-like interactions.
• PID: Möbius inversion on redundancy lattice.

• Möbius inversions capture different notions of higher-order structure.
• Ising interactions exactly disentangle different orders of dependencies, at the

cost of an operational interpretation.
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