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¢ Goal: quantify higher-order structure.
o Information theory: Entropy/MI
e Partial information decomposition
o Statistical physics: Interactions in energy-based models
e Are these related?
o Today:
¢ Relating interactions in energy-based models to information theory.
e Some ways in which synergy is better captured by these interactions than by
entropy-based measures.
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The Ising model: a physical perspective

e A model of interacting spins ¢ on a lattice, in a magnetic field h.
e 0={01,...,0n}, 0;€{0,1}.
e The energy of a configuration—at equilibrium—is given by:

E(o) = — Z Jijoioj — Z hioi
i i

o High energy: + | 1T |

e Low energy: T 1T 1T ¢
o The probability of a configuration is given by:

p(0) = 5 exp(~FE(0))

o J; is called the coupling, or interaction, between spins 7 and j.
e Description of magnets, neurons, bird flocks, social dynamics, etc. 2



The Ising model: a statistical perspective (Jaynes ’57)

o Observe binary variables o = {o1,...,0n}.
o Write down a probability distribution p(o).

o Fewest assumptions: maximum entropy distribution

Zp )log p(o

« Subject to constraints > p(o) =1 = p(o) =2
e Add more constraints:

ZP(U)Ui:Hi) Zp( )00 = [hij

e = p(o) = %GXP(— Z” Jijoioj — 32 hioi)
o Ising model!

—N

o Interactions and field fixed by observed moments.



Higher-order interactions

e What if you constrain the higher-order moments?
o MaxEnt solution:

E(o’) = —Zhiai - Z JijO'iO'j— Z Jijko'io'jo'k B
7 %,

i7j7k:

e An Ising model with higher-order interactions.

o Predicting properties of p(o) is the forward Ising problem.
o Fitting to data—the inverse Ising problem—is hard.

o MLE inference (exponential, pairwise only?)
o Pseudolikelihood (polynomial, approximate but consistent, pairwise only?)
o Restricted Boltzmann machines (approximate, unstable)



Model-free interactions

e What do we really mean when we say interaction? (Beentjes & Khamseh, 2020)

o A change in tendency to be on/off when another variable is on/off.

Tendency to be on, or 1-point interaction:

9log p(X)
I = X=X\ {X;
i 0%, |xo0 X=X\ {Xi}
2-point interaction:
01; ~ 9%log p(X)

Iy = X=X\ {X;, Xj}

8Xj X=0 a 8X]8X2 X=0



Model-free interactions

e A change in 2-point interaction is a 3-point interaction:

0L _ Plogp(X)
OXylx=0  0X,0X;0X;|x=0

L = X=X\ {X;, Xj, Xpe}

e And so on.

e When the X; are binary, the derivatives are just differences:

7 9logp(X)
! 0X; lx=o
=logp(X;=1[X=0)—logp(X;=0| X=0)
= log pXi=1]X=0)
X;=0| X=0)



Model-free interactions

o Notation pgpe = p(Xi =0, X; =0, X =c| X=0)

e 1-point interactions:

I — M’ —log P
! 8X1 X=0 Po
2-point:
I — 3210gp(X)‘ = log P11Poo
! 0X;0X; 1x=0 Po1P10
3-point:
Ly = M _ P111P100P010P001
! 0X,0X;0X; 1 x=0 D000P011P101P110

e Model-free estimator: sample means!
 Symmetric in terms of the variables: Ig = I (g
o Conditionally independent variables do not interact: X; 1l X | X = 1;; =0



Model-free interactions solve the inverse Ising problem!

E(X) == hX;= > JXiX; = > JuXX;Xp— ...
A ,j 2.5,k

B 93 log p(X)

T X 0X0X,

 PPEX)

T OX0X0X;

X=0

X=0
= Jujk
P111P100P010P001 711171007010 7001
= log ~log ———————
PoooPo11P101P110 Npo0 01111011110

o Ngpe is the number of samples that look like (0,...,0,a,b,¢,0,...,0)



Model-free interactions

o Surprisal of a state X: — log p(X)

e Interactions are sums of surprisals:

P1
I; = log — = log p1 — log po
Po

Iij = log P11Poo

Po1P10

P111P100Po10Po01

PoooPo11P101P110

= log p11 + log p11 — log po1 — log p1o

o What determines the alternating signs? (Even/odd)

e Similar to mutual information



Mutual information

o Higher-order mutual information:

MI(X,Y) = H(X) — H(X|Y)
= H(X) + H(Y) - H(X, Y)
MI(X,Y,Z) = MI(X,Y) — MI(X, Y| 2)
= H(X)+ H(Y)+ H(Z) — H(X, Y) — HX, Z) — H(Y, Z) + H(X, Y, 2)

o Sign determined by even/odd number of variables

o Higher-order structure is captured by Mobius inversion
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Mo6bius function

o Subsets form a lattice under inclusion: XY,z =1

e S<T < SCT / l \
o Capture relationships in poset P:

Xy} (X2 {(v.2

| < A

ifz=1y (X} (2}

1 (v}
pp(z,y) =S — 2 hkp(z2) ifz<y \ h /
zrlz<ly
0 otherwise

Mobius function up: Px P— R

11



Mo6bius inversion

Let P be a poset (5, <), let up: P x P— R be the Mobius function, and let
g: P — R be a function on P. Then, the function

) = ppl(zy)g(2)

z<y

is called the Md&bius inversion of g on P. Furthermore, this can be inverted:

fy) = ne(ey)9(2) < g(y) = > fla)

z<y z<y

« On Boolean algebra (hypercube): u(z, y) = (—1)#-1¥
—> Mobius inversions on Boolean algebras are sign-alternating sums.
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Mo6bius inversion

e Mutual information is the Mdbius inversion of marginal entropy:

MI(7) = (=0T " pp(n, 7) H(n)

n<t

o Pointwise mutual information is the Mobius inversion of marginal surprisal:

pmi(r) = (=) " pup(n, 7) log p(n)

n<r

e Model-free interactions are the Mobius inversion of surprisal:

I(r; T) = > (~1)"=Mog p(n =1, T\ n = 0)

n<t

13



Dual quantities

o If P=(5,<) is a lattice, then P°P = (S, <)
(where a < b <= a > b) is a lattice.

(X,v,2} =1
e What is dual mutual information
MF(7) =3, < (=D)L Hp)? / T \
e Dual MI of a single variable X: (X, v} (X,2) (v, 2
M (X)= MIX,Y,Z) — MI(Y, Z) T\/ yT
=MIY,Z| X)=Ax

{X3

{Y}
o Conditional/differential mutual information. \ T /

o In general context T': MI*(7) = MI(T\ 7| 1)

{2}
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Dual quantities

o Dual interactions I*(7; T) = anT(—l)‘"HT‘ logp(n=1,T\n=0)
e Dual interaction of a single variable X in a system with 3 variables:
FXAX Y, 2h) = (X, Y, 2) + [(Y, 2)

P111P100
= log ———
P11oP101

e Thisis (Y, 2) |x=1.
e Dual interactions are interactions in a context of 1s:

o P T) = [T\ 7) =

¢ Outeractions

15



Summary

e Mutual information is the Mobius inversion of marginal entropy.
o Pointwise mutual information is the Mdbius inversion of marginal surprisal.
e Model-free interactions are the Mobius inversion of surprisal.

o Dual mutual information is a generalisation of conditional entropy/differential

mutual information.
¢ Dual interactions are interactions in a context of 1s.
e NB: These all imply an intuitive inverse relation:

fw) = np(a,y)g(2) < g(y) = > f@)

<y =<y
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Summary

o Define: evalp:logp(R=71)—logp(R=1,T\ R=0)
e Then:

Mpop MP

MPF(R)= MI(T\ R | R) H(R) MI(R)
E E E
pmi*(}B =) Meor i log p(R =) — M pmi(é =)
evalp evalp evalp
Mpop Mp
F(R; T) ilogp(R=1;T=0) ———— I(R; T)
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Results: Synergy in logic gates

e What does a 3-pt interaction correspond to?

og P111P100Po10P0o01
P0o00P011P101P110

Inpe=1

o Maximally positive = only terms in numerator are > 0.

A B|C

0 01
0 1,0
1 01]0
1 11

e XNOR gatel!
o (XOR is maximally negative)
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Results: Synergy in logic gates

o Let p(allowed state) = p and
p(forbidden state) = e.

o Let I=4log?

g Iapc Mlppc Ja

o Interactions have higher resolution 3
than M. XNOR I -1 51
AND~NOR and OR~NAND ROR ! L o
’ TR and R ' AND 11 —0189 i1
o Def. Jq =I4pc— IBc OR —%] —0.189 —1I
e J4 has perfect resolution. NAND —%[ —0.189 —%I
e JXNOR 5, jNOR -, JAND NOR I —0.189 I

e Ordered by synergistic content.

o (holds for even higher-orders as well)
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Results: Causal dynamics
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Results: Dy- and Triadic distribution

e 6 variables: (X(), Xl, Y(), Yl, Z(), Zl)
. Dyadic: XO = Yl, Yo = Z1, Z() = X1
o Triadic: Xg+ Yo+ Zp =0 mod 2

and X1 = Y] = 7 Dyadic | Triadic
X s s
e Variables combined to form categorical Y Z|P@ | x ¥ z]re
o0 ol p o o ofp
variables X, Y, Z. 0 2 1| p |1 1 1| p
1 0 2 P 0 2 2 P
e (X0, X1)=(1,1) = X=3 1 2 3| p |1 3 3] p
Indisti ishable b 1 11 inf . 2 1 0 P 2 0 2 »
¢ Indistinguishable by almost all information > 3 1] p 13 1 3|
measures. (James & Crutchfield, 2017) 3.1 20 p |2 2 0 p
3 3 3| p |3 3 1| p
e PID: has to identify in- and output variables. clse ¢ clse ¢

e Symmetrised categorical interactions: I
e Dyadic: Ixyz =1logl =0
e Triadic: Ixyz = 64log ; 21



Teaser: model-free interactions on real data

o Samples that look like (0,...,0,a,b,¢,0,...,0) can be rare.
o Estimation becomes tractable using Markov blankets.

e In my thesis, I calculated MFIs in gene expression data.

e 1000 genes, 20k cells

e Interactions at up to seventh order.

e These revealed types of neurons not found in embryonic mice before.
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Conclusion

o Entropy-based information measures cannot distinguish all causal dynamics.
o Ising-like interactions can offer higher resolution.
e Uniquely identify causal dynamics & logic gates.
o The different notions of higher-order structure are all based on Mébius
inversions:
o (Pointwise) mutual information, Ising interactions are inversions on Boolean
algebra
e All have meaningful duals.
e Other lattices:
e categorical Ising-like interactions.
e PID: Mobius inversion on redundancy lattice.
o Mobius inversions capture different notions of higher-order structure.
o Ising interactions exactly disentangle different orders of dependencies, at the

cost of an operational interpretation.
23
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